McMinnville High School Facilities Improvements

Conditional Use and Building Height Variance

Application Narrative

October 7, 2016

Figure 1 Proposed McMinnville High School Expansion Viewed from Southwest

EXTERIOR VIEW

McMinnville School District

Winterbrook Planning / DOWA-IBI
APPLICANT/OWNER: McMinnville School District
Contact: Peter Keenan, Director of Facilities and Operations1500 NE Baker Street
McMinnville, OR 97128
REPRESENTED BY: Winterbrook PlanningContact: Ben Schonberger, Senior Planner310 SW $4^{\text {th }}$ Avenue, Suite 1100
Portland, OR 97204
Phone: 503-827-4422
DOWA - IBI Group Architects, Inc.
Contact: Jim Fitzpatrick
907 SW Stark Street
Portland, OR 7205Phone: 503-226-6940
SITE ADDRESS: $\quad 615$ E $15^{\text {th }}$ Street
DESCRIPTION: Map 4416CA Tax Lot 2600 (High School Property)
Map 4415CC Tax Lot 1590 (Baker Field)Map 4416CA Tax Lot 3000 (District Maintenance Yard)
EXISTING ZONING: Residential (R-2)
CURRENT LAND USE: High School, Athletic Fields and Maintenance Yard
APPLICATION: Conditional Use Permit and Building Height Variance
DATE: October 7, 2016

Contents

Figures 4
Appendices 4
Section 1 Background Information 5
A. Phase 1 MHS Expansion (2007-2008) 5
B. Project Proposal - Phase 2 High School Renovation 6
Required Land Use Permits 7
C. Phase 2 - Projects Funded by the 2016 Bond Measure 8
D. Phased Development 11
E. Site Description 11
F. Public Process 12
September 2016 Neighborhood Meetings 14
G. Key Issues 15
Parking and Circulation 15
Table 1. Existing and Proposed Parking Spaces 15
Buffering 16
Section 2 Compliance with Conditional Use Criteria 17
A. Why the proposal will be consistent with the Comprehensive Plan and the objectives of the zoning ordinance and other applicable policies of the City; 17
B. Why the location, size, design, and operating characteristics of the proposed development are such that it can be made reasonably compatible with and have minimal impact on the livability or appropriate development of abutting properties and the surrounding neighborhood, with consideration to be given to harmony in scale, bulk, coverage, and density; to the availability of public facilities and utilities; to the generation of traffic and the capacity of surrounding streets; and to any other relative impact of the development; 20
C. Why the development will cause no significant adverse impact on the livability, value, or appropriate development of abutting properties of the surrounding area when compared to the impact of permitted development that is not classified as conditional; 21
D. Why the location and design of the site and structures for the proposal will be as attractive as the nature of the use and its setting warrants; 22
E. Why the proposal will preserve environmental assets of particular interest to the community; 23
F. Why the McMinnville School District has a bona fide intent and capability to develop and use the land as proposed and has no inappropriate purpose for submitting the proposal, such as to artificially alter property values for speculative purposes. 23
Section 3 Compliance with Zoning and Parking Standards 24
Chapter 17.15 Compliance with R-2 Single Family Residential Zone Standards 24
Chapter 17.60 Compliance with Off Street Parking and Loading Standards 24
Table 2. Parking Requirements for Expansion Area 25
Section 4 Gymnasium Height Variance Findings 29
Why a height variance is needed 29
Special height exception for schools 30
Section 17.74.110 Conditions for Granting Variance 30

Figures

Figure 1 Proposed McMinnville High School Expansion Viewed from Southwest 1
Figure 2 McMinnville High School Aerial View - 2006 5
Figure 3 McMinnville High School Approved Conditional Use Site Plan 2007 6
Figure 4 McMinnville High School Aerial View 2015 7
Figure 5 Phase 2 Site Plan showing High School and Baker Field Renovation, New Technology Center and Field House, and Improved Parking and Circulation 8
Figure 6 Technical Center and Cafeteria Addition 9
Figure 7 Proposed MHS Ground Floor Expansion, Technical Center and Field House 10
Figure 8 Proposed MHS Upper Level Expansion (Auxiliary Gym above Locker Room) 11
Figure 9 Aerial View of Project Site - MHS, Baker Field and Maintenance Facility 12
Figure 10 September 15, 2016 Open House - McMinnville High School 13
Figure 11 Proposed High School Expansion Viewed from the Southeast 16
Figure 12 Why the Auxiliary Gym Needs to be 53'6" Tall 29
Figure 13 Distance from Auxiliary Gym North Elevation to NE 17th Street 30
Figure 14 Schematic Drawing showing Auxiliary Gym in relation to NE 17th Street 31

Appendices

Appendix 1: Project Drawings (DOWA)

LU 1.1.1 Existing High School Context Site Plan
LU 1.01 Existing Conditions (West)
LU 1.02 Existing Conditions (East)
LU 1.2.1 Transportation Circulation Plan (Schematic)
LU 1.5.1 Proposed Building Expansion Plan (Schematic)
LU 1.7.1: Proposed Building Elevations (Schematic)
LU 1.7.2: Proposed Building Elevations
LU 1.7.3: Proposed Building Elevations
LU 1.7.4 SE Axonometric View (Schematic)
LU 1.7.5 SW Axonometric View (Schematic)
LU 1.7.6 Proposed Building Massing (NE $17{ }^{\text {th }}$ Street and Hembree Street)
LU 2.01 Site Plan West (detailed)
LU 2.02 Site Plan East (detailed)
LU 3.01 Proposed Parking and Circulation Plan (detailed)
LU 4.01 Existing Utility \& Easements
LU 5.01 Proposed Utility \& Easements
L 1.00 Landscape Plan (East)
L $1.00 \quad$ Landscape Plan (West)
E $1.01 \quad$ Partial Site Plan Electrical

Appendix 2: Transportation Impact Study (Lancaster Engineering)

Section 1 Background Information

In 2005, with substantial public input, the McMinnville School District (the District) made the decision to invest limited bond funds in the redevelopment of the existing central high school to increase capacity by 700 students - rather than constructing a second high school on the west side of town. ${ }^{1}$

On May 27, 2016, McMinnville voters overwhelmingly approved a Measure 36-177, which authorized $\$ 89.4$ million for capital improvements, including funds for a new career pathways (vocational technical) program and renovation of the central (older) facilities at McMinnville High School (MHS). ${ }^{2}$

A. Phase 1 MHS Expansion (2007-2008)

This project is the second phase of a project that began with MHS expansion in 2007-08. Figure 2 shows conditions as they existed in 2006 before the 2007-08 high school expansion.

Figure 2 McMinnville High School Aerial View - 2006

In Phase 1 (2007-08), the District added 63,000 square feet to the existing high school to accommodate approximately 700 additional by adding 26 new classrooms, a kitchen, and a cafeteria.

[^0]Phase 1 added 188 parking spaces - 41 spaces more than required for the approved school expansion project. Figure 3 shows the approved site plan for the Phase 1 high school expansion.

Figure 3 McMinnville High School Approved Conditional Use Site Plan 2007

B. Project Proposal - Phase 2 High School Renovation

In Phase 2 (2016-18), the focus is on improving high school facilities and programs - rather than accommodating more new students. The Career Pathways program will graduate students with trade/career skills through that will position graduates for community college or trade apprenticeships, thereby increasing student graduate success for those not on the 4-year college track.

Phase 2 improvements include:

- A new vocational technical center ("career pathways") building
- Central Redevelopment (Additional instructional classrooms and laboratories; consolidated and expanded indoor athletic facilities; and cafeteria expansion)
- A new Field House (to be used as a temporary physical education facility during construction, and for athletic programs and equipment storage thereafter)
- Baker Field improvements
- Improved bus and vehicular flow through the high school site
- Expanded parking lot (46 additional parking spaces - for a total 467 spaces)

Figure 4 (following page) shows high school conditions as they exist today - consistent with the plans approved by the Planning Commission in 2007.

Figure 4 McMinnville High School Aerial View 2015

Required Land Use Permits

Phase 2 high school improvements require a conditional use permit for high school renovations authorized by the 2016 bond measure, and a height variance to allow construction of the planned auxiliary gymnasium above existing locker rooms east of the existing main gymnasium.

- Conditional Use: The conditional use review will ensure that neighborhood impacts from high school renovation are minimized through the strategic design and location of buildings, parking and circulation areas.

Key elements of the Phase 2 plan include:

- Building within existing building footprints where possible;
- Replacing the NE McDonald Lane district-wide maintenance facility;
- Moving the greenhouse and shed away from NE $17^{\text {th }}$ Street to the center of the site;
- Improving on-site bus and vehicular circulation and increasing on-site parking; and
- Screening the Field House and parking areas from nearby residential areas.
- Height Variance: Part of the design strategy is to use the existing school site efficiently by building up rather than out. A height variance is necessary to allow for an auxiliary gym to be constructed above new locker room facilities. By consolidating indoor athletic
fields in a taller central structure, the District is able to provide additional on-site parking, maintain outdoor athletic fields on-site, and provide perimeter landscaping to minimize impacts on the neighborhood.

Because the 53 ' 4 " peak of the shed roof will be set back 79^{\prime} from the north property line (and 129^{\prime} from the front property lines of homes across NE $17^{\text {th }}$ Street), the building height variance will have no significant adverse shading or visual impacts on neighboring residential properties.
Figure 5 Phase 2 Site Plan showing High School and Baker Field Renovation, New Technology Center and Field House, and Improved Parking and Circulation

SITE PLAN

MCMINVILLE HIGH SCHOOL 09.13.2016

C. Phase 2 - Projects Funded by the 2016 Bond Measure

McMinnville School District Bond Measure 36-177 passed on May 17, 2016 by over a 60% majority. This bond measure $\$ 89.4$ million bond measure is matched by $\$ 7.1$ by state funds. The bond measure focuses on improvements to McMinnville High School with upgrades to other District buildings:

- Construction of a Career Pathway/Vocational Technology Center. This center will house several of the Career Pathway programs and make room in the existing school building to expand other programs. Pathway programs include Business Finance and Marketing, Computer Science, Construction, Criminal Justice,

Culinary Arts, Early Childhood Education, Education, Engineering \& Aerospace Sciences (EASA), Manufacturing, Fabrication \& Welding, Fire \& Emergency Services, Health Services, Horticulture, Natural Resources Management, Performing Arts - Music and Theater, Visual Arts, Visual Communications.

Figure 6 Technical Center and Cafeteria Addition EXTERIOR VIEW

CAFETERIA / VOCATIONAL

- Improved instructional space. Four new classrooms at the Technology Center, plus 20 replacement classrooms and labs in the central high school building. The new classrooms will accommodate about 100 additional students, including EASA students returning to the main campus from the Evergreen Aviation facility.
- Centralized athletic facilities. The main gymnasium, auxiliary gym, locker rooms, and dance/yoga facilities will be replaced in a centralized athletic complex.
- Baker Field Improvements, including:
- Upgrading existing competition Soccer Field with synthetic turf

O -Adding half-field Football synthetic field practice field for Freshman Football

- -Timer controlled Field Lighting
- -Community walking path around both fields
- -Restroom and storage building

O -Additional pathways from 17th street and Evans Street Building Parking Lot

Other District-wide (including the high school) facility improvements include:

- Safety, security and technology infrastructure upgrades. Security improvements include safe entry management, security cameras, emergency intercom systems, door access controls, technology infrastructure, fire sprinkler systems, emergency back-up lighting, and other improvements to enhance school safety.
- Facility repairs to maintain district buildings, including the high school. Facility repairs and improvements, such as roofing, electrical, plumbing and mechanical system repairs necessary to main and responsibly stewer the community's investment.
- Energy upgrades to save operating costs. Energy efficiency upgrades include alternative (solar) energy roof arrays, replacement of windows, doors, insulation, and HVAC systems and other upgrades documented that will reduce daily operating costs.
Figure 7 Proposed MHS Ground Floor Expansion, Technical Center and Field House

Figure 8 Proposed MHS Upper Level Expansion (Auxiliary Gym above Locker Room)

D. Phased Development

School facility improvements are proposed over a two and a half year period beginning in February 2017:

- Vocational Technical Center building, parking, bus lane, cafeteria, entry security (February - August 2017)
- Baker Field repair and renovations (May - August 2017)
- Repair and renovation (May - August 2018)
- High school addition demolition and construction (June 2018 - August 2019)

E. Site Description

McMinnville High School sits on a 38.42 acre site generally bounded by E 15th Street, E 17th Street, NE Baker Street, and NE McDonald Lane in the heart of McMinnville. The site consists of three tax lots: a 22 acre tax lot east of Evans, a 16 acre tax lot west of Evans, and a 0.42 acre district maintenance building tax lot. The site is already developed for school, athletic field, maintenance and related school uses.

The site is zoned for Single Family Residential (R-2) use. Land to the north, south, and east has the same zoning. An area of land to the north of the running track is zoned General Commercial (C-3). West of NE Baker, the land is also zoned C-3.

Figure 9 Aerial View of Project Site - MHS, Baker Field and Maintenance Facility

Access to the existing high school building is primarily via driveway entrances from $15^{\text {th }}$ Street on the south side of the school. There is also a vehicular entrance on the north side of the parking lot from $17^{\text {th }}$ Street, across from NE Galloway Street. There are currently 422 off-street parking spaces, including the main lot, a small parking area off NE $17^{\text {th }}$ Avenue, and the angle-in spaces off NE $15^{\text {th }}$ Avenue.

The school site is surrounded by residential development. Single-family residential neighborhoods border the school to the north, south, and east. An area of developed commercial property borders the site at the far end, adjacent to the running track, north of $17^{\text {th }}$ Street and along NE Baker Street.

There are no inventoried natural or historical resources on the site. Perimeter trees are located along most property lines and along public streets. Landscaped areas consist primarily of athletic fields with grass and shrubs surrounding existing buildings.

F. Public Process

The proposed plan for the High School was developed as the result of an intensive public outreach process that preceded the May 17, 2016 bond election. The plan follows the recommendations of the Long Range Facilities Task Force and the recommendations of the 2005 and 2012 Long Range Facilities Assessment Reports.

For almost two decades the District has maintained a mailing list of 300 neighbors in the immediate area around the high school known as the Neighbor Council, this group of neighbors was invited to bring issued and observations regularly to a high school meetings and gathers and were included in regular mailings informing them of activities planned in and around the high school property.

Figure 10 September 15, 2016 Open House - McMinnville High School

Over the last two years, District representatives have met directly with nearby residents to identify key issues as follows:

- Student parking on neighborhood streets
- Student driving speed and carelessness
- Trash left on streets
- Stadium lighting left on at night
- Athletic field and band practice noise

In addition to open public meetings with neighborhood residents, school district staff and the superintendent have talked directly and individually to some neighbors to discuss design options. Ultimately, give-and-take process with the people who be most affected by the high school has greatly improved the quality of the overall site plan. Balancing the interests of the various constituent groups within a limited budget and a fixed site area has been achieved through the proposed design.

At least two of the neighborhood concerns identified above have that have been brought forward and solved:

- Late night lights at the Stadium have been corrected with a timer that shuts lights at a consistent time each night
- Yard Trash from students has been assigned to Student groups to regularly police and pick-up on walk home paths from the school

This year the Associated Student Body Leadership Group (40 students) has taken the assignment to continue this work in the neighborhood and work on community outreach with the following assignments.

- Neighborhood Leaf Raking \& Pick-up Program
- Yard Litter Pick-up (student trash that finds its way into neighbors yards and on sidewalks)
- Communication of High School Activities Calendar (door to door effort)
- Communication of heavy parking events around the High School, Stadium and Auditorium.

September 2016 Neighborhood Meetings

In preparation of submission of this conditional use and variance application, District representatives and the project team met with neighborhood residents at the high school to review proposed plans before preparing final application drawings, first on September $15^{\text {th }}$ and again on September $21^{\text {st }}, 2016$.

At each of these meetings, District and the design team representatives provided an overview of the educational goals, the permitting process, the current state of the project design, and construction schedule and phasing.

The September 15 meeting was attended by a 12 citizens who asked questions related to the following topics:

- Project timing and construction phasing
- Coordinating construction with school activities
- Project budget
- Parking supply

The September $21^{\text {st }}$ meeting (35 attendees) was held concurrent with "Back to School Night", with an abbreviated presentation and more time for citizen questions. These questions included:

- Seismic upgrade information
- Construction scheduling
- Vehicular circulation and bus access
- Parking supply and management
- Building aesthetics

The design team answered citizen questions and agreed to continue communications with the public on these issues.

G. Key Issues

Parking and Circulation

Parking on local streets remains the central issue for neighbors. The District is trying to build enough on-site parking to accommodate student and staff demand, but not so much that parking areas overwhelm the site or detract from the District's commitment to carry out projects identified in the 2016 bond measure. Neighbors want school-related cars off neighborhood streets if possible, but recognize that there are limits to what can be accomplished on the existing high school site.

Some existing spaces will are needed to accommodate the Technical Center; to compensate for this loss and add additional parking, a portion of the practice field in the northeastern portion of the site (west of the Stadium) will be converted to parking. To balance the anticipated parking needs of the renovated high school with the desire to be responsive to neighbors, the District proposes a new, larger parking lot (to replace an athletic practice field in the northern portion of the property - west of the Stadium. Additional parking is also proposed next to the new Field House. The new supply of parking for the high school will total 467 spaces.

Table 1 summarizes the location and number of existing and proposed parking spaces on the high school site.

- As documented in Section 3 of this narrative, City parking standards require 21 spaces to accommodate four new classrooms and 100 additional students.
- As shown on Table 1, the number of parking spaces will increase by 46. This amounts to 25 spaces more than required by code.

Table 1. Existing and Proposed Parking Spaces

Location	Existing Parking	Proposed Parking
NE $15^{\text {th }}$ Street Diagonal Parking	22	22
Central Drive Visitor Parking	0	8
Primary Entrance Parking	70	70
Southeast Parking Area	128	128
Central East Parking Area	186	41
Northeast Parking Area	5	168
North Service Area	6	22
Field House Parking Area	4	8
Total Parking Spaces	$\mathbf{4 2 1}$	$\mathbf{4 6 7}$

Figure 11 Proposed High School Expansion Viewed from the Southeast

EXTERIOR VIEW

- 国

Buffering

The District is concerned with potential visual impacts from proposed parking lots and the Field House on neighboring yards. The proposed landscape plan shows a combination of and a midlevel evergreen hedge to screen these uses from neighbors' views without creating safety problems for students and visitors.

Section 2 Compliance with Conditional Use Criteria

17.74.030 Authorization to Grant or Deny Conditional Use. A conditional use listed in this ordinance shall be permitted, altered or denied in accordance with the standards and procedures of this chapter. In the case of a use existing prior to the effective date of this ordinance and classified in this ordinance as a conditional use, a change in the use or in lot area, or an alteration of any structure shall conform with the requirements for conditional uses. In judging whether or not a conditional use proposal shall be approved or denied, the Planning Commission shall weigh its appropriateness and desirability or the public convenience or necessity to be served against any adverse conditions that would result from authorizing the particular development at the location proposed and, to approve such use, shall find that the following criteria are either met, can be met by observance of conditions, or are not applicable:
A. Why the proposal will be consistent with the Comprehensive Plan and the objectives of the zoning ordinance and other applicable policies of the City;

Applicable Comprehensive Plan Policies

In 2007, the staff report identified the following McMinnville Comprehensive Plan goals and policies as applicable to the high school expansion. Applicable plan goals and policies are addressed below.

> CHAPTER III CULTURAL, HISTORICAL, AND EDUCATIONAL RESOURCES GOAL III 1: TO PROVIDE CULTURAL AND SOCIAL SERVICES AND FACILITIES COMMENSURATE WITH THE NEEDS OF OUR EXPANDING POPULATION, PROPERLY LOCATED TO SERVICE THE COMMUNITY AND TO PROVIDE POSITIVE IMPACTS ON SURROUNDING AREAS.
> Policy 13.00 The City of McMinnville shall allow future community center type facilities, both public and private, to locate in appropriate areas based on impacts on the surrounding land uses and the community as a whole, and the functions, land needs, and service area of the proposed facility.

GOAL III 3: TO PROVIDE FOR THE EDUCATIONAL NEEDS OF McMINNVILLE THROUGH THE PROPER PLANNING, LOCATION, AND ACQUISITION OF SCHOOL SITES AND FACILITIES.
Educational Policies:
18.00 The City of McMinnville shall cooperate with the McMinnville School District in the planning for future schools.
19.00 The location of future school sites shall be coordinated between the City and the McMinnville School District.

Response: The McMinnville School Board's decision to improve the high school at its existing location (rather than building a second high school on the Hill Road site) was based on the recommendation of the Long Range Facilities Task Force and DOWA's 2012 update the
"Long Range Facilities Assessment Report." The District determined that there is not a sufficient high student population (approximately 2,200) to justify two high schools. MHS's central location is accessible to high school students throughout the District via Baker Avenue (Highway 99W). The strategic design and location of buildings, parking and circulation areas ensures that neighborhood impacts from high school renovation are minimized through by:

- Building within existing building footprints where possible;
- Replacing the NE McDonald Lane district-wide maintenance facility with a new Field House and more parking spaces;
- Moving the greenhouse and shed away from NE $17^{\text {th }}$ Street to the center of the site and adding more parking spaces;
- Improving on-site bus and vehicular circulation and increase on-site parking; and
- Screening the Field House and new parking areas from nearby residential areas

The school district has collaborated with the City in discussions about the current site and its intentions to expand and renovation McMinnville High School at its current location. Planning Director Doug Montgomery served on the Long Range Facilities Task Force that made the recommendation to expand the school at its current location. A public process that included City officials was part of the campaign to approve the bond measure.
CHAPTER VI TRANSPORTATION SYSTEM
GOAL VI 1: TO ENCOURAGE DEVELOPMENT OF A TRANSPORTATION
SYSTEM THAT PROVIDES FOR THE COORDINATED MOVEMENT OF
PEOPLE AND FREIGHT IN A SAFE AND EFFICIENT MANNER.
Streets: $126.00 \quad$ The City of McMinnville shall continue to require adequate off-
street parking and loading facilities for future developments and land use changes.
Parking $127.00 \quad$ The City of McMinnville shall encourage the provision of off-
street parking where possible, to better utilize existing and future roadways and rights-
of-way as transportation routes.

Response: Section 1.G (Key Issues) and Table 1 of this narrative demonstrates that more than adequate parking will be provided to address impacts from the proposed high school renovation. Section 3 explains why the proposal meets applicable City parking design standards and substantially exceeds the number of required parking spaces resulting from the proposed expansion..

The proposed parking plan shows a net increase in on-site parking of 46 spaces (from 421 to 467 spaces). The proposed Transportation Circulation Plan shows how bus and vehicular traffic flow to and through high school site will be significantly improved. The Transportation Impact Study (TIS) prepared by Lancaster Engineering shows that the proposed high school renovation and modest expansion will have no significant impact on the street system serving the high school.

> CHAPTER VII COMMUNITY FACILITIES AND SERVICES
> GOAL VII 1: TO PROVIDE NECESSARY PUBLIC AND PRIVATE FACILITIES AND UTILITIES AT LEVELS COMMENSURATE WITH URBAN DEVELOPMENT, EXTENDED IN A PHASED MANNER, AND PLANNED AND PROVIDED IN ADVANCE OF OR CONCURRENT WITH DEVELOPMENT, IN

ORDER TO PROMOTE THE ORDERLY CONVERSION OF URBANIZABLE AND FUTURE URBANIZABLE LANDS TO URBAN LANDS WITHIN THE McMINNVILLE URBAN GROWTH BOUNDARY.
Sanitary Sewer System Policy $136.00 \quad$ The City of McMinnville shall insure that urban developments are connected to the municipal sewage system pursuant to applicable city, state, and federal regulations.

Response: There is an existing 20" public sanitary sewer that runs through the high school site from the north along the Galloway Street right-of-way. The line passes under the east end of the main high school vehicle way and continues to the south back out into the 15 th Street and continues south within Galloway. A lateral line will be extended to the east from this 20 " sewer to provide sanitary drainage for both the Technical Center and Field House buildings.

> Storm Drainage Policy $142.00 \quad$ The City of McMinnville shall insure that adequate storm water drainage is provided in urban developments through review and approval of storm drainage systems, and through requirements for connection to the municipal storm drainage system, or to natural drainage ways, where required.

Response: Onsite storm water treatment is not required within the City of McMinnville. Storm water detention facilities are usually required by the City of McMinnville development requirements. Per discussion with City Engineer Mike Bisset at City of McMinnville, however, the high school site lies in a sub-basin that does not have a detention requirement. Consequently, no design of detention, treatment, down-stream conveyance analysis or onsite infiltration will be required for the project. Storm facilities will include standard plumbing, catch basins and manholes to collect runoff from new buildings and impervious surfaces. The new storm drain facilities will be connected to an existing 24 " storm main that currently runs within the main onsite vehicle roadway aligned with Hembree Street.

> Water System Policies
> 144.00 The City of McMinnville, through the City Water and Light Department, shall provide water services for development at urban densities within the McMinnville Urban Growth Boundary.
> 147.00 The City of McMinnville shall continue to support coordination between City departments, other public and private agencies and utilities, and the City Water and Light Department to insure the coordinated provision of utilities to developing areas. The City shall also continue to coordinate with the City Water and Light Department in making land use decisions.

Response: There is an existing 10" public water main within the 17th Street right-of-way. The line continues across the northeast corner of the high school site within a public utility easement. The main high school fire and potable service lines are provided from this main at the intersection of $17^{\text {th }}$ and Galloway Streets. The high school is currently served by a 3" potable service and a 6 " fire line. New fire and potable water service connections with appropriate backflow assemblies for the new proposed Technical Center are planned to be provided from this same 10" water main in 17th Street.

Police and Fire Protection:

155.00 The ability of existing police and fire facilities and services to meet the needs of new service areas and populations shall be a criterion used in evaluating annexation, subdivision proposals, and other major land use decisions.

Response: The proposed new school renovation will be provided with a complete automatic sprinkler system. An 8 " line will be extended into the school site to supply the onsite hydrant and sprinkler system riser. Based on perimeter protection requirements (OFC 507.5.1), no exterior portion of the building exterior perimeter may be more than 600 feet from a fire hydrant. There are two existing public fire hydrants connected to the 10 " main running through the northeast corner of the high school site. Both of these hydrants may need to be relocated slightly to accommodate new vehicle circulation ways, but the locations should be sufficient to provide perimeter protection for both the proposed new buildings.

Energy Conservation:

178.00 The City of McMinnville shall encourage a compact urban development pattern to provide for conservation of all forms of energy.

Response: The proposal to expand and renovate MHS at its existing location encourages more efficient use of the existing high school site as called for by this policy. Reuse of existing infrastructure in a central location with excellent transportation access is an effective energy conservation measure. The 2016 bond measure includes a number of energy conservation measures, including a planned rooftop solar energy array.

Zoning Ordinance Objectives

Consistency Moreover, the proposal complies with all the relevant standards of the zoning code (Chapter 17), as demonstrated in this application..
B. Why the location, size, design, and operating characteristics of the proposed development are such that it can be made reasonably compatible with and have minimal impact on the livability or appropriate development of abutting properties and the surrounding neighborhood, with consideration to be given to harmony in scale, bulk, coverage, and density; to the availability of public facilities and utilities; to the generation of traffic and the capacity of surrounding streets; and to any other relative impact of the development;

District Response: The following narrative explains why the proposed high school expansion, as designed, will have a minimal impact on the livability of the surrounding neighborhood when compared with existing conditions.

Location

The Board's decision to improve the high school at its existing location (rather than building a second high school on the Hill Road site) was based on the recommendation of the Long Range Facilities Task Force and DOWA's 2012 update the "Long Range Facilities Assessment Report."

The District determined that there is not a sufficient high student population (approximately 2,200) to justify two high schools. MHS's central location is accessible to high school students throughout the District via Baker Avenue (Highway 99W) and NE Lafayette Avenue and McMinnville's grid street system.

Size and Design - Scale, Bulk, Coverage and Density

Overall, this building is sited on a large lot (approximately 38.42 acres). At the proposed size, the new building and other paved surfaces still covers over half of the site. The height and bulk of the proposed central building is mitigated by the stair-step design, which breaks up the building façade when viewed from the north and has not adverse impact on sunlight to residential lots on NE $17^{\text {th }}$ Street.

The new parking area buffers adjacent development to the north with a landscape buffer that reduces the potential aesthetic impacts of the parking lot. The interior of this lot has landscaping and pedestrian paths to assist in pedestrian circulation within the lot and between the school and the stadium. Overall, the amount of open areas and greenspace on the school district property is consistent with the pattern of residential development in the area. Thus, the "scale, bulk, coverage, and density" of the new development on the site is compatible with the surrounding neighborhood.

Operating Characteristics

With regard to operating characteristics, the school will continue to operate on its regular schedule, approximately 8:30 to 3:00. Athletic events will follow the same general pattern as they have for many years. As noted in Sections 1.F and 1.G (Public Process and Key Issues) the District and MHS have made multiple, ongoing efforts to work with neighbors to resolve parking, noise and trash issues related to high school operations, These efforts have been largely successful, but require ongoing coordination between neighborhood and high school faculty and student representatives.

Adequate public facilities and utilities serve the proposed school including water and sewer. Storm drainage will be managed as shown on the site plan. The traffic impacts of the proposed addition will be relatively benign and can be supported by existing facilities. A transportation analysis is included as Appendix 2 of this application and shows that the existing street system can accommodate anticipated traffic from the proposed development. The proposed circulation plan will result in a much more efficient bus and vehicle movement to and through the school site. The 2-houir parking limit on NE $15^{\text {th }}$ and $17^{\text {th }}$ Streets adjacent to the school, combined with additional on-site parking (beyond what the MZO requires) will reduce the likelihood of students parking on public streets in the neighborhood.
> C. Why the development will cause no significant adverse impact on the livability, value, or appropriate development of abutting properties of the surrounding area when compared to the impact of permitted development that is not classified as conditional;

Response: Permitted uses in the R-2 zone range from low density residential single-family homes and duplexes to public parks. In many ways the high school is similar to a public park in that sporting events often have the greatest impact, in terms of noise, glare, traffic and parking.

As documented in more detail in Section 1.F of this narrative, the MHS site is buffered from most nearby residential development by NE $15^{\text {th }}$ and NE $17^{\text {th }}$ Streets and McDonald Lane - each of which has a 50' right-of-way. The tallest buildings (the gymnasium and auditorium) are centrally located approximately 79^{\prime} from the NE $17^{\text {th }}$ Street property line, which minimizes visual and shading impacts from the high school renovation.

As documented in Section 1.G of this narrative, residential neighbors and City staff have voiced concerns about traffic, on-street parking, noise and light impacts from school students, especially after major sports events. As documented in more detail in Sections 1.F and 1.G of this narrative, these impacts are mitigated by this proposal in the following ways:

- Additional on-site parking and the 2-hour parking restriction on NE $15^{\text {th }}$ and $17^{\text {th }}$ Streets will reduce the need for students to park on nearby public streets;
- The perimeter of the school site is landscaped with trees and (in most cases) shrubbery;
- New parking areas and the Field House will be screened fenced and screened with evergreen shrubs;
- The new bus and vehicular circulation system will move traffic more efficiently to and through the school site;
- Regular communications between high school staff and neighborhood residents provide an opportunity to identify and respond to nuisance impacts in a timely and effective manner;
- Lighting from outdoor activities and for security is directed away from light-sensitive areas (homes and yards) and hooded where appropriate to focus light on athletic fields and parking areas.
- Student outreach efforts have proven effective in educating and providing peer pressure to encourage students to behave in a responsible manner.

D. Why the location and design of the site and structures for the proposal will be as attractive as the nature of the use and its setting warrants;

Response: MHS has been at this location since the 1950s. The District and its architects have made a number of design improvements to make the high school renovation as attractive as possible, given budgetary constraints and recognizing that high school operations will have some neighborhood impacts regardless of the design and layout of buildings on the site.

The project design will ensure that neighborhood impacts from high school renovation are minimized through the strategic design and location of buildings, parking and circulation areas. Key Phase 2 design features include:

- Building within existing building footprints where possible;
- Stepping the height of buildings down as they approach high school property lines; Replacing the NE McDonald Lane district-wide maintenance facility with a new Field house and screening;
- Moving the greenhouse and shed away from NE $17^{\text {th }}$ Street to the center of the site and providing additional parking;
- Improving on-site bus and vehicular circulation and increasing on-site parking; and
- Screening the Field House and parking areas from nearby residential areas.

E. Why the proposal will preserve environmental assets of particular interest to the community;

Response: There are no city-inventoried environmental assets on the property. Surrounding properties are developed as residential uses. As noted in the 2007 staff report regarding high school expansion, this criterion is not applicable.

F. Why the McMinnville School District has a bona fide intent and capability to develop and use the land as proposed and has no inappropriate purpose for submitting the proposal, such as to artificially alter property values for speculative purposes.

Response: The McMinnville School District has an intent and capability to use the land as proposed. The district committed itself to build the project in the last election, and because of the passage of the 2016 bond measure, has the financial resources to begin construction in February of 2017.

Section 3 Compliance with Zoning and Parking Standards

Chapter 17.15 Compliance with R-2 Single Family Residential Zone Standards

The following findings demonstrate compliance with applicable R-2 Single Family Residential Zone standards.
17.15.010 Permitted uses. In an R-2 zone, the following uses and their accessory uses are permitted:
17.15.020 Conditional uses. In an R-2 zone, the following uses and their accessory uses may be permitted subject to the provisions of Chapters 17.72 and $17.74 * * *$ J. Public or private school or college;

Response: The proposed use, a school, is not listed in this subsection as an outright permitted use. However, itt is a listed conditional use under 17.15.020(J). Therefore the project may be permitted if all the provisions of chapter 17.72 and 74 are met. Findings for conditional use review criteria found in 17.74.30 (Authorization to Grant or Deny Conditional Use) are addressed in Section 1, above.
17.15.030 Lot size. In an R-2 zone, the lot size shall not be less than seven thousand square feet, except as provided in Section 17.15.010(C) of this ordinance. 17.15.040 Yard requirements. In an R-2 zone, each lot shall have yards of the following size unless otherwise provided for in Section 17.54.090: A. A front yard shall not be less than twenty feet; B. A rear yard shall not be less than twenty feet; C. A side yard shall not be less than seven and one-half feet, except an exterior side yard on the street side of a corner lot shall be not less than twenty feet.

Response: The high school was built in the 1950s before the MZO was adopted in 1968. The oldest part of the building infringes on the rear 20' setback by a few feet; the existing greenhouse and shed also intrude into the rear setback area. Phase 2 renovations will remove the remove the shed and relocate the greenhouse in a central area, thus reducing nonconforming setbacks on this site. All new buildings will be constructed within required building envelopes.
17.15.050 Building height. In an R-2 zone, a building shall not exceed a height of thirty-five feet.

Response: Except for the main gymnasium expansion, the proposed expansion will be well below the 35^{\prime} ' height maximum. Please see building height variance discussion in Section 3 below.

Chapter 17.60 Compliance with Off Street Parking and Loading Standards

The following findings demonstrate compliance with applicable Off Street Parking and Loading standards.
17.60.040 Spaces-Used to park automobiles only. Required parking spaces shall be available for the parking of operable passenger automobiles of residents, customers, patrons, and employees only, and shall not be used for storage of vehicles or materials or for the parking of trucks used in conducting the business or use. 17.60.050 Spaces-Location. Off-street parking spaces for dwellings shall be located on the same lot with the dwelling. All other required parking spaces shall be located not farther than two hundred feet from the building or use they are required to serve, measured in a straight line from the building.

Response: The parking areas as shown on the site plan serve both the proposed high school and its athletic facilities. The parking lots are sufficiently close to these uses that they meet this standard.
17.60.060 Spaces-Number required. Except for the southerly 100 feet of Block 10 and the northerly 100 feet of Block 11, Rowland's Addition and the area bounded by Second Street, Adams Street, Fourth Street, and Galloway Street, at the time of erection of a new structure or at the time of enlargement or change of use of an existing structure, off-street parking spaces shall be provided as follows unless greater requirements are otherwise established. Where square feet are specified, the area measured shall be the gross floor area primary to the functioning of the particular use of the property but shall exclude space devoted to off-street parking or unloading. B. Institutional land use category: ***10. Senior high school: One space per classroom plus one space per administrative employee plus one space per each six students or one space per four seats or eight feet of bench length in the main auditorium or gymnasium, whichever is greater.

Response: The school currently has 421 parking spaces -41 spaces more than required to meet parking standards for new development in 2007. The future impacts from the expanded high school are quantifiable as follows: 4 new classrooms, no new administrative employees, and 100 new students in addition to the approximately 2,200 students now attending MHS.

Table 2. Parking Requirements for Expansion Area

Category	Quantity	Spaces required
New classrooms and labs	4	4
New administrative employees	0	0
New students beyond 700 projected in 2007	100	17
Net new spaces required using "Classroom method"		$\mathbf{2 1}$
Additional spaces provided		$\mathbf{4 6}$

As shown on Table 2, the District is providing 25 spaces in excess of the minimum required to address impacts of the new expansion. The additional spaces are being constructed to accommodate students and staff from the existing building, to alleviate existing parking pressures and reduce on-street student parking.
17.60.070 Off-street loading requirements.
A. Buildings or structures to be built or substantially altered which receive and distribute materials and merchandise by trucks shall provide and maintain off-street loading berths in sufficient number and size to adequately handle the needs of the particular use;
B. The following standards shall be used in establishing the minimum number of berths required:

> Gross Floor area of the Building in Square Feet $\quad 10,000$ and over Number of Berths
C. A loading berth shall contain a space twelve feet wide and thirty-five feet long and have a vertical clearance of fourteen feet. Where the vehicles generally used for loading and unloading exceed these dimensions, the required size of these berths shall be increased.

Response: Loading will occur at the service area in the northeast corner of the building, which was improved as part of the 2007 high school expansion. Its layout and functioning is shown on the site plan. This loading area will also be used for loading of school supplies, food, etc.
17.60.080 Design requirements.
A. All parking lots and driving aisles shall be asphaltic cement concrete or Portland cement concrete with driving aisles, maneuvering aisle and parking spaces clearly marked...;

Response: The site plan shows a parking layout and design that conforms to all of the standards listed above. All parking areas will be paved. Detailed construction documents will also be submitted at the time of building permit that further demonstrates compliance with the dimensional standards of this section.
B. In a residential zone, a required front yard or a required side yard adjacent to the street shall not be used for any purpose except for off-street parking of motor vehicles, unless otherwise allowed by this ordinance, and such parking space shall not be less than twenty feet in depth from the property line;

Response: The site plan shows a parking layout and design that conforms to all of the standards listed above. Parking spaces within the 20^{\prime} rear and front setbacks is at least 20^{\prime} in depth as required by this section. Detailed construction documents will also be submitted at the time of building permit that further demonstrates compliance with the dimensional standards of this section.
C. Safe access shall be provided as follows:

1. Access aisles shall be of sufficient width for all vehicular turning and maneuvering;
2. Groups of more than four parking spaces shall be so located and served by a driveway that their use will require no backing movements or other maneuvering within a street right-of-way other than an alley;
3. Driveways to off-street parking areas shall be designed and constructed to facilitate the flow of traffic and to provide for maximum safety of pedestrians and vehicular traffic on the site;
4. Clear vision areas shall be provided at driveway exits for all uses except singlefamily and two-family residential and shall have minimum dimensions of ten feet measured along the street right-of-way and the edge of the driveway. In commercial and industrial zones, buildings and signs may be constructed with cantilevers which extend out over the clear vision area at a height greater than eight feet when measured from the top of the curb, or where no curb exists, from the established centerline grade. Except for existing permanent buildings and structures (other than signs), nonconformities shall be made to comply with the provisions of this section within seven years from the date of its adoption;
5. Driveway cuts shall be a minimum of twenty feet from a street intersection;

Response: The site plan shows a parking layout and design that conforms to all of the standards listed above. Detailed construction documents will also be submitted at the time of building permit that further demonstrates compliance with the dimensional standards of this section.
D. Parking areas shall be made compatible with surrounding uses as follows:

1. Parking spaces along the outer boundaries of a parking area shall be contained by a curb or a bumper rail so placed to prevent a motor vehicle from extending over an adjacent property, sidewalk, or street;
2. When a parking area in a commercial or industrial zone abuts a property in a residential zone, a site-obscuring fence or wall, either permanent or of living material, shall be placed along the affected property line. The responsibility for placement of the fence or wall lies with the commercial or industrial property;
3. Artificial lighting which may be provided shall be so deflected as not to shine or create glare in any residential zone or on any adjacent dwelling;
E. \backslash Space size minimum shall be as follows:
4. Handicap parking spaces shall be a minimum of twelve feet wide and 19 feet in length.
5. Compact and subcompact parking spaces shall be a minimum of eight feet by sixteen feet.
6. Standard parking spaces shall be a minimum of eight feet six inches by nineteen feet.
F. \backslash The type of space shall be set as follows:
7. Handicap spaces shall be required and designated as per current federal, state, and local regulations.
8. Standard spaces shall comprise not less than sixty-five percent of all newly constructed lot spaces.

Response: As shown on proposed site plans, the proposed design meets these standards as follows:

- Parking areas along the outer boundaries of parking areas all have curbs to contain vehicles;
- An evergreen hedge will be planted to screen all parking areas from adjacent streets and residential yards;
- Parking and driveway lighting is designed to shine away from neighboring residential areas;
- The parking lots provide standard, compact and handicapped spaces as required by code.
17.60.140 Bicycle parking.
A. Bicycle parking facilities shall be required as follows:

1. In any commercial (C-l, C-2, and C-3) or office/residential (O-R) zone, bicycle parking facility requirements shall be based on the amount of automobile parking required. The minimum number of bicycle parking spaces provided shall be ten percent of the automobile parking spaces required.
2. The uses exempted from bicycle parking requirements include: residential uses, drive-in theaters, mortuaries, motels, hotels, and automobile service stations.
3. In all zones, for each fifteen automobile parking spaces required, a required automobile parking space may be eliminated if five bicycle parking spaces are provided.
B. Bicycle parking facilities shall be provided pursuant to the following design standards. (as modified by the Bicycle Parking Administrative Rule of September 14, 1984):
4. At a minimum, a bicycle parking facility shall consist of a stationary object to which the user can lock the frame and both wheels with a user-provided six-foot cable or chain and lock.
2 Fixed objects which are intended to serve as bicycle parking facilities but not obviously designed for such purposes shall be clearly labeled as available for bicycle parking.
5. Bicycle parking facilities shall provide a least an eighteen inch clearance between adjacent bicycles.
6. Aisles between bicycle parking facilities shall be at least five-feet in width.
7. Paving is not required for bicycle parking areas, but the outside ground surface shall be finished or planted in such a way that the surface will remain free from mud or dust. Bicycle parking may be provided within a required landscape area.
8. Bicycle parking should be situated at least as conveniently as the most convenient car parking area. Bicycle and automobile parking areas shall be separated by a physical barrier or sufficient distance to protect parked bicycles from damage by automobiles.

Response: From the code language above, it appears that bicycle parking is not required for developments in the R-2 zone. However, the transportation circulation plan shows bicycle and skateboard parking areas.

Section 4 Gymnasium Height Variance Findings

The District requests a height variance to allow for an auxiliary gym to be constructed above new locker rooms adjacent to the existing gymnasium. As shown on Figure 12, the height at the top of the shed roof will be $53^{\prime} 6{ }^{\prime}$. The low point of the shed roof will be 44^{\prime}.

Figure 12 Why the Auxiliary Gym Needs to be 53'6" Tall

Why a height variance is needed

There are two principle reasons for the height variance:

1. The height variance is necessary to use the high school site efficiently, while allowing sufficient area for parking, athletic fields and landscaping. By building up rather than out, the school is able to provide additional parking for students, teachers and high school events, while retaining Baker Field and the High School Stadium athletic fields on-site.
2. The height variance allows for consolidation of state-of-the-art athletic facilities (indoor basketball court, training areas, girls and boys locker rooms and showers, and weight training facilities in the same concentrated area.

This is all achieved by allowing construction of the new gym above the men's and women's locker room facilities as shown on Figure 12. The bottom of roof structure for the main gym needs to be at least 25^{\prime} for basketball, with a roof of. 8^{\prime}. Thus, the lowest height of the roof (on the west end) is about 44^{\prime}, about 10^{\prime} higher than the existing 34^{\prime}
tall gymnasium and auditorium. However, the second floor (above the locker rooms) must be 14 ' above the finish floor; the roof assembly is about 3 ', resulting in an average roof height of 50^{\prime}. The roof needs an additional $3^{\prime} 6^{\prime \prime}$ at its peak to account for the slope of the shed roof.

Special height exception for schools

The maximum height for residential buildings in the R-2 zone is 35^{\prime}; the minimum rear yard setback for buildings in the R-2 zone is 20^{\prime}. However, McMinnville Zoning Ordinance Section 17.54.040 allows educational buildings as high as 60^{\prime}, provided that required yard increases by one foot for each foot above 35^{\prime} in the R-2 zone:
> 17.54.040 Exceptions to Building Height. The following exceptions to building height are permitted.
> Public Buildings. Public, quasi-public or public-service buildings, hospitals, educational institutions or schools may be erected to a height not exceeding 60 feet, and churches and temples may be erected to a height not exceeding 75 feet, when permitted in a zone with lower height regulations, provided that required yards are increased one foot for each foot of additional building height above the height regulations for the zone.

The definition of "required yard" is from property line to any part of the building face. The yard requirement in the R-2 zone is 20 feet. If the District were starting from scratch, the $53^{\prime} 6^{\prime \prime}$ proposed roof minus 35 foot limit results in $18^{\prime} 6^{\prime \prime}$ of excess height, which requires $18^{\prime} 6^{\prime \prime}$ of additional setback, which means 38 ' 6 " feet of total setback.

The existing building does not appear to comply with the 20 foot setback in all locations probably because it was built prior to adoption of the McMinnville Zoning Ordinance in 1968. Most of the northern wall of the building is setback 20' from the property line.

Although the single-story north wall of the high school building is not set back 38 feet from the property line, the north wall of the auxiliary gym is 79^{\prime} back from the property line, which is about twice the setback required for a $53^{\prime} 6$ ' tall building ($38^{\prime} 6$ ').
Figure 13 Distance from Auxiliary Gym North Elevation to NE 17th Street

Section 17.74.110 Conditions for Granting Variance
All of the following criteria must be met for a height variance to be approved.
A. Why Exceptional or extraordinary circumstances apply to the property which do not apply generally to other properties in the same zone or vicinity, and result from lot size or shape legally existing prior to the date of the ordinance codified in this title, topography, or other circumstance over which the applicant has no control;
Response: The MHS site is very large - approximately 38.42 acres; this is the only developed high school site in McMinnville. The north wall of the school building was also constructed prior to adoption of the McMinnville Zoning Ordinance (MZO). This circumstance does not apply to any other property in the vicinity.

The central portion of high school has been here since 1960 prior to adoption of the MZO; the District could not have known that a variance would be necessary in the future due to the lack of an adequate setback ($38^{\prime} 6^{\prime}$) to allow a tall building on this site.

At this point, the District no longer has the option of creating a larger yard to allow the height authorized by Section 17.54.040 Exceptions to Building Height The school site is fully developed or needed for bond-funded school buildings, parking areas or athletic fields. This site condition makes it difficult to meet the high school's programmatic needs, as authorized by the 2016 bond measure, without exceeding the R-2 height limitation in this location. This circumstance does not apply to any other property in the City or vicinity.
B. Why the variance is necessary for the preservation of a property right of the applicant substantially the same as owners of other property in the same zone or vicinity possess;
Response: As noted above, the high school represents an unusual situation that is not directly comparable to a single-family home, duplex or accessory dwelling unit (permitted uses in the zone). The R-2 zone allows 35^{\prime} tall homes with only an 8^{\prime} setback, which would limit sunlight to adjacent homes to the north. Presumably, the purpose of the height standard is to provide light, air and open space between homes in the R-2 zone.

MZO 17.15.050 recognizes that schools may be up to 60^{\prime} in height with a larger yard in the R-2 zone. The larger yard requirement presumably preserves light, air and open space for nearby houses. In the MHS's case, the purpose of the regulation is fully met by stair-stepping the buildings down from south to north, as shown on Figures 12 and 14. If the height variance is not approved, the District would be deprived of a property right (i.e., the height specified for schools in the R-2 zone) that typically be allowed for single-family homes or duplexes in the vicinity (the height specified for homes in the R-2 zone).

It is important to note that MZO 17.75.050 recognizes that conditional use permits (the high school has had several since the MZO was adopted in 1968) confer a property right to the permit holder:

17.74.060 Use Conveyed with Property-Termination Condition and Procedures.

A. Subject to the provisions of this section, a conditional use shall become a property right and shall be conveyed to the benefit of the owner or other person(s) entitled to possession regardless of transfer of title or interest unless otherwise specified by the Planning Commission at the time of approval;

The District has received several conditional use permits to allow school alteration since the 1950s when MHS was originally constructed - most recently in 2007. The District has a reasonable expectation that school expansion will be permitted at this location. Based on existing site conditions and the demonstrated need to expand the high school at this location, the height variance is necessary to preserve the District's investment in MHS which depends on the ability to build up to $53^{\prime} 6$ '" at this location.
> H. Why the variance would not be materially detrimental to the purposes of this title, or to property in the zone or vicinity in which the property is located, or otherwise conflict with the objectives of any city plan or policy;

The purpose of the MZO is quoted below:

Abstract

17.03.020 Purpose. The purpose of the ordinance codified in Chapters 17.03 (General Provisions) through 17.74 (Review Criteria) of this title is to encourage appropriate and orderly physical development in the city through standards designed to protect residential, commercial, industrial, and civic areas from the intrusions of incompatible uses; to provide opportunities for establishments to concentrate for efficient operation in mutually beneficial relationship to each other and to shared services; to provide adequate open space, desired levels of population densities, workable relationships between land uses and the transportation system, adequate community facilities; and to provide assurance of opportunities for effective utilization of the land resources; and to promote in other ways public health, safety, convenience, and general welfare.

Response: This narrative has already demonstrated that high school renovation and expansion at this location is appropriate and orderly. The primary purpose of MHS Phase 2 proposal is to provide adequate and efficient provision of educational services to high school students throughout the District, as evidenced by the passed of the 2016 bond measure. MHS provides large amounts of community open space in the form of athletic and practice fields.

The Phase 2 proposal is designed to protect nearby residential areas from potential adverse school impacts. (See also discussion of public outreach and key issues in Sections 1.F and 1.G of this narrative.)

A major part of the design strategy is to use the existing school site efficiently by building up rather than out. By consolidating indoor athletic facilities in a taller central structure, the District is able to provide additional on-site parking, maintain outdoor athletic fields on-site, and provide perimeter landscaping to minimize impacts on the neighborhood. In this sense, approval of the height variance benefits neighboring residential areas, and would not be materially detrimental to the property in the R-2 zone or across NE $17^{\text {th }}$ Street.

Figure 14 shows the separation between the auxiliary gym on the left to homes across NE $17^{\text {th }}$ Street on the right. Note that the stepped design minimizes potential adverse impacts related to air, light, shading and bulk of the school. The tallest part of the building is located 79' from the school property line; moreover, the street right-of-way provides an additional 50' of separation from homes along E $17^{\text {th }}$ Street.

A height variance is necessary to allow for an auxiliary gym to be constructed above new locker room facilities. Because the 53 '4' peak of the shed roof will be located 79 ' from the north property line (and 129' from the front property lines of homes across NE $17^{\text {th }}$ Street), the building height variance will have no significant adverse shading or visual impacts on neighboring residential properties.

The McMinnville Comprehensive Plan is the controlling land use policy document in the City. As documented in Section 2.A above, the Comprehensive Plan (especially goals and policies related to the provision of school, transportation and other public facilities) strongly supports coordinated school expansion that considers and minimizes neighborhood impacts.

D. Why the variance requested is the minimum variance which would alleviate the hardship.

Response: In the introduction to Section 4, Figures 13 and the related discussion clearly shows that $53^{\prime} 6$ " (at the highest point of the shed roof) is necessary to accommodate the plan auxiliary gym above planned locker rooms in the planned athletic complex. The high school must build up at this location or sacrifice parking and open space that is highly valued by neighbors, the District and the City. There is simply no more room on site to achieve bond measure objectives without building up.

KADRD LED
 LED Retrofit Kit

-OxTROUR

Specifications

EPA:	$\begin{gathered} 1.2 \mathrm{ft}^{2} \\ \left(0.11 \mathrm{~m}^{2}\right) \end{gathered}$
Length:	$\begin{gathered} 17-1 / 2^{\prime \prime} \\ (44.5 \mathrm{~cm}) \end{gathered}$
Width:	$\begin{aligned} & 17-1 / 2^{\prime \prime} \\ & (44.5 \mathrm{~cm}) \end{aligned}$
Height:	$\begin{aligned} & 7-1 / 8^{\prime \prime} \\ & (18.1 \mathrm{~cm}) \end{aligned}$
Weight (max):	$\begin{gathered} 13 \mathrm{lbs} . \\ (5.9 \mathrm{~kg}) \end{gathered}$

Number
Notes
Type \quad 'SA1'

Introduction

The Contour ${ }^{\circledR}$ Series luminaires offer traditional square dayforms with softened edges for a versatile look that complements many applications. The KADRD LED retrofits any existing 100-400W metal halide or high pressure sodium KAD into a high-performance LED luminaire, while realizing typical energy savings up to 65% with expected service life up to 100,000 hours. The KADRD LED retrofit door simply replaces the existing KAD door containing the glass lens and installs in minutes.

Ordering Information

EXAMPLE: KADRD LED 40C 1000 40K R5 MVOLT DDBXD
KADRD LED

Series	LEDs		Drive current		CCT		Distribution		Voltage
KADRD LED	$\begin{aligned} & 20 C^{1} \\ & 30 C^{1} \\ & 40 C \\ & 60 C^{2} \end{aligned}$	20 LEDs 30 LEDs 40 LEDs 60 LEDs	$\begin{aligned} & 530^{1} \\ & 700 \\ & 1000^{2} \end{aligned}$	$\begin{aligned} & 530 \mathrm{~mA} \\ & 700 \mathrm{~mA} \\ & 1000 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~K} \\ & 40 \mathrm{~K} \\ & 50 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 3000 \mathrm{~K} \\ & 4000 \mathrm{~K} \\ & 5000 \mathrm{~K} \end{aligned}$	R2 R3 R4 R5	Type II Type III Type IV TypeV	$\begin{aligned} & \text { MVOLT } \\ & 120^{3} \\ & 208^{3} \\ & 240^{3} \\ & 277^{3} \\ & 347^{1} \\ & 480^{1} \end{aligned}$

Accessories	Notes
krawcu Whiesuaddacesor	
For more oontolo potions,	

LIGHTING.

Lumen Output

 differ as a result of end-user environment and application. Actual wattage may differ by $+/-8 \%$ when operating between $120-480 \mathrm{~V}+/-10 \%$. Contact factory for performance data on any configurations not shown here.

LEDs	Drive Current (mA)	System Watts	$\begin{aligned} & \text { Dist. } \\ & \text { Type } \end{aligned}$	30K					40K					50K				
				Lumens	B	U	6	LPW	Lumens	B	U	G	LPW	Lumens	B	U	G	LPW
20 C	530 mA	35W	R2	4,140	1	0	1	115	4,446	1	0	1	123	4,473	1	0	1	124
			R3	4,123	1	0	1	115	4,427	1	0	1	123	4,455	1	0	1	124
			R4	4,128	1	0	1	115	4,433	1	0	1	123	4,460	1	0	1	124
			R5	4,381	2	0	1	122	4,704	2	0	1	131	4,734	2	0	1	131
	700 mA	46 W	R2	5,271	1	0	1	115	5,660	1	0	1	123	5,696	1	0	1	124
			R3	5,250	1	0	2	114	5,637	1	0	2	123	5,672	1	0	2	123
			R4	5,256	1	0	2	114	5,644	1	0	2	123	5,679	1	0	2	123
			R5	5,578	3	0	1	121	5,990	3	0	1	130	6,027	3	0	1	131
	1000 mA	73W	R2	7,344	1	0	2	101	7,886	1	0	2	108	7,935	1	0	2	109
			R3	7,314	1	0	2	100	7,854	1	0	2	108	7,903	1	0	2	108
			R4	7,322	1	0	2	100	7,863	1	0	2	108	7,912	1	0	2	108
			R5	7,771	3	0	1	106	8,345	3	0	1	114	8,397	3	0	1	115
$30 C$	530 mA	53 W	R2	6,166	1	0	2	116	6,621	1	0	2	125	6,663	1	0	2	126
			R3	6,141	1	0	2	116	6,594	1	0	2	124	6,635	1	0	2	125
			R4	6,148	1	0	2	116	6,602	1	0	2	125	6,643	1	0	2	125
			R5	6,525	3	0	1	123	7,006	3	0	1	132	7,050	3	0	1	133
	700 mA	70W	R2	7,817	1	0	2	112	8,395	2	0	2	120	8,447	1	0	2	121
			R3	7,785	1	0	2	111	8,360	1	0	2	119	8,412	1	0	2	120
			R4	7,795	1	0	2	111	8,370	1	0	2	120	8,422	1	0	2	120
			R5	8,272	3	0	1	118	8,883	3	0	2	127	8,938	3	0	1	128
	1000 mA	108W	R2	10,755	2	0	2	100	11,549	2	0	2	107	11,621	2	0	2	108
			R3	10,711	2	0	2	99	11,502	2	0	2	106	11,574	2	0	2	107
			R4	10,724	2	0	2	99	11,515	2	0	2	107	11,587	2	0	2	107
			R5	11,381	3	0	2	105	12,221	3	0	2	113	12,297	3	0	2	114
$40 C$	530 mA	71W	R2	8,156	2	0	2	115	8,758	2	0	2	123	8,812	2	0	2	124
			R3	8,122	1	0	2	114	8,722	2	0	2	123	8,776	2	0	2	124
			R4	8,132	1	0	2	115	8,732	1	0	2	123	8,786	1	0	2	124
			R5	8,630	3	0	2	122	9,267	3	0	2	131	9,325	3	0	2	131
	700 mA	94W	R2	10,286	2	0	2	109	11,045	2	0	2	118	11,114	2	0	2	118
			R3	10,244	2	0	2	109	11,000	2	0	2	117	11,069	2	0	2	118
			R4	10,256	2	0	2	109	11,013	2	0	2	117	11,081	2	0	2	118
			R5	10,884	3	0	2	116	11,688	3	0	2	124	11,761	3	0	2	125
	1000 mA	141 W	R2	13,923	2	0	2	99	14,951	2	0	2	106	15,045	2	0	2	107
			R3	13,866	2	0	3	98	14,890	2	0	3	106	14,983	2	0	3	106
			R4	13,882	2	0	3	98	14,907	2	0	3	106	15,000	2	0	3	106
			R5	14,733	4	0	2	104	15,821	4	0	2	112	15,920	4	0	2	113
$60 C$	530 mA	103W	R2	11,997	2	0	2	116	12,882	2	0	2	125	12,963	2	0	2	126
			R3	11,947	2	0	2	116	12,829	2	0	2	125	12,909	2	0	2	125
			R4	11,961	2	0	2	116	12,844	2	0	2	125	12,925	2	0	2	125
			R5	12,694	4	0	2	123	13,632	4	0	2	132	13,717	4	0	2	133
	700 mA	134W	R2	14,927	3	0	3	109	16,029	3	0	3	117	16,130	3	0	3	118
			R3	14,866	3	0	3	109	15,964	2	0	3	117	16,063	2	0	3	117
			R4	14,884	3	0	3	109	15,982	2	0	3	117	16,082	2	0	3	117
			R5	15,796	4	0	2	115	16,962	4	0	2	124	17,068	4	0	2	125

LITHONIA
One Lithonia Way • Conyers, Georgia 30012 • Phone: 800.279.8041 • www.lithonia.com
KADRD-LED
LIGHTING.

Performance Data

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$.

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.02
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.01
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.00
$\mathbf{2 5} \mathbf{C}$	$\mathbf{7 7}^{\circ} \mathbf{F}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	1.00
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.99

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the KADRD LED platform in a $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Factor	KADRD LED 40C 1000			
	1.0	0.93	0.88	0.79
	KADRD LED 60C 700			
	1.0	0.98	0.97	0.94

Electrical Load

			Current (A)							
Number of LEDs	Dive Current (mA)	System Watts	120	208	240	277	347	480		
20	530	35	0.30	0.18	0.16	0.15	-	-		
	700	46	0.39	0.23	0.20	0.18	0.15	0.12		
	1000	73	0.61	0.35	0.31	0.27	0.22	0.17		
	530	53	0.44	0.26	0.23	0.20	-	-		
	700	70	0.58	0.34	0.29	0.26	0.21	0.16		
	1000	108	0.90	0.52	0.46	0.40	0.32	0.24		
40	530	71	0.60	0.35	0.32	0.29	0.21	0.16		
	700	94	0.79	0.46	0.41	0.36	0.27	0.20		
	1000	141	1.18	0.68	0.59	0.52	0.42	0.30		
60	530	103	0.87	0.50	0.44	0.39	0.29	0.22		
	700	134	1.15	0.66	0.58	0.51	0.40	0.29		

NOTE: All ratings in this table are for a nominal system operated at $25^{\circ} \mathrm{C}$ ambient temperature. Current and power specifications in this table do not include branch circuit derating specified in the National Electrical Code. Please observe all applicable electrical codes and ratings.

Photometric Diagrams

Isofootcandle plots for the KADRD LED 40C 530. Distances are in units of mounting height (20^{\prime}).

FEATURES \& SPECIFICATIONS

INTENDED USE

The energy savings and long life of the KADRD LED area luminaire make it a reliable choice for illuminating streets, walkways, parking lots, and surrounding areas.

CONSTRUCTION

Single-piece die-cast, aluminum housing with contoured edges has a $0.12^{\prime \prime}$ nominal wall thickness. Die-cast door frame is fully gasketed with one-piece tubular silicone.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish
that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage
process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate
changes without cracking or peeling.

OPTICS

Precision-molded refractive acrylic lenses are available in four distributions. Light engines are available in standard 4000 K or optional 3000 K or $5000 \mathrm{~K}(70 \mathrm{CRI}$) configurations

ELECTRICAL

Light engine consists of high-efficacy LEDs mounted to a metal-core circuit board and aluminum heat sink, ensuring optimal thermal management and long life. Class 1 electronic driver has a power factor $>90 \%$, THD $<20 \%$, and has an expected life of 100,000 hours with $<1 \%$ failure rate. Easily-serviceable surge protection device meets a minimum Category C Low (per ANSI/IEEE C62.41.2).

INSTALLATION

Retrofit only--mounts directly on existing KAD or KAD-LED housing.

LISTINGS

CSA certified to U.S. and Canadian standards. Luminaire is IP65 rated. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient. DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www. designlights.org to confirm which versions are qualified.

WARRANTY

5 -year limited warranty. Complete warranty terms located at
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Actual performance may differ as a result of end-user environment and application All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

L/THON/A
L/GHTING.

Stock configurations are offered for shorter lead times:

Standard Part Number

KAD LED 30C 1000 40K R3 MVOLT PUMBAK09 DDBXD KAD LED 30C 1000 40K R5 MVOLT PUMBAK09 DDBXD KAD LED 40C 1000 40K R3 MV0LT PUMBAK09 DDBXD KAD LED 40C 1000 40K R5 MV0LT PUMBAK09 DDBXD KAD LED 30C 1000 40K R3 MVOLT PUMBAK09 PIRH DDBXD KAD LED 30C 1000 40K R5 MVOLT PUMBAK09 PIRH DDBXD KAD LED 40C 1000 40K R3 MVOLT PUMBAK09 PIRH DDBXD KAD LED 40C 1000 40K R5 MVOLT PUMBAK09 PIRH DDBXD

Stock Part Number

KADL 30 C 40 K R3 KADL 30C 40K R5 KADL 40C 40K R3 KADL 40C 40K R5 KADL 30C 40K R3 PIRH KADL 30C 40K R5 PIRH KADL 40C 40K R3 PIRH KADL 40C 40K R5 PIRH

Accessories

Ordered and shipped separately DLL127F 1.5 JU Photocell - SSL twist-lock (120-277V) ${ }^{14}$ DLL347F 1.5 CUL JU Photocell - SSL twist-lock (347V) ${ }^{14}$ DLL480F 1.5 CUL JU Photocell - SSL twist-lock (480V) ${ }^{14}$ DSHORT SBKU Shorting cap ${ }^{14}$ KADLEDHS 20C U Houseside shield for 20 LED unit KADLEDHS 30CU Houseside shield for 30 LED unit KADLEDHS 40CU Houseside shield for 40 LED unit KADLEDHS 60CU Houseside shield for 60 LED unit KMA DDBXD U Mast arm adapter (specify finish) KADWG U Wire guard accessory
PUMBAK DDBXD U* Square and round pole universal mounting bracket adaptor (specify finish)
For more control options, visit DTL and ROAM online. *Round pole top must be 3.25 " O.D. minimum.

NOTES

120 C or 30 C LED are not available with 530 Drive Current and 347 V or 480 V
2 Not available with 347 voltage
3 MVOLT driver operates on any line voltage from $120-277 \mathrm{~V}(50 / 60 \mathrm{~Hz})$. Single fuse (SF) requires 120, 277 or 347 voltage option. Double fuse (DF) requires 208, 240 or 480 voltage option.
4 Maximum ambient temperature with 347 V or 480 V is $30^{\circ} \mathrm{C}$
5 Not available with 530 mA .
$6 \quad 9$ " or $12^{\prime \prime}$ arm is required when two or more luminaires are oriented on a 90° drilling pattern.
7 Available as a separate combination accessory: PUMBAK (finish) U.
8 Mounting must be restricted to $\pm 45^{\circ}$ from horizontal aim per ANSI C136.10-2010.
9 PIR and PIR1FC3V specify the SensorSwitch SBGR-10-ODP control; PIRH and PIRH1FC3V specify the SensorSwitch SBGR-6-ODP control; see Outdoor Control Technical Guide for details. Dimming driver standard.
10 Requires an additional switched circuit with same phase as main luminaire power. Supply circuit and control circuit are required to be in the same phase.
11 Dimming driver standard. MVOLT only. Not available with $347 \mathrm{~V}, 480 \mathrm{~V}$, PER5, PER7 or PNMT options.
12 Dimming driver standard. MVOLT only. Not available with $347 \mathrm{~V}, 480 \mathrm{~V}$, PER5, PER7, BL30 or BL50.
13 Also available as a separate accessory; see Accessories information
14 Requires luminaire to be specified with PER option. Ordered and shipped as a separate line item from Acuity Brands Controls.

Tenon Mounting Slipfitter **

Tenon 0.D.	Single Unit	2 at 180°	2 at $90^{\circ} \dagger$	3 at 120°	3 at $90^{\circ} \dagger$	4 at $90^{\circ}{ }^{\dagger}$
$2-3 / 8^{\prime \prime}$	$\mathrm{T} 20-190$	$\mathrm{~T} 20-280$	$\mathrm{~T} 20-290$	$\mathrm{~T} 20-320^{\dagger}$	$\mathrm{T} 20-390$	$\mathrm{~T} 20-490$
$2-7 / 8^{\prime \prime}$	$\mathrm{T} 25-190$	$\mathrm{~T} 25-280$	$\mathrm{~T} 25-290$	$\mathrm{~T} 25-320$	$\mathrm{~T} 25-390$	$\mathrm{~T} 25-490$
$4^{\prime \prime}$	$\mathrm{T} 35-190$	$\mathrm{~T} 35-280$	$\mathrm{~T} 35-290$	$\mathrm{~T} 35-320$	$\mathrm{~T} 35-390$	$\mathrm{~T} 35-490$

**For round pole mounting (RPDXX) only. t Requires 9" or 12" arm.

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

LEDs	Drive Current (mA)	System Watts	Dist. Type	$\begin{gathered} 30 \mathrm{~K} \\ (3000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					40 K$(4000 \mathrm{~K}, 70 \mathrm{CRI})$					($5000 \mathrm{~K}, 70 \mathrm{CRI}$)				
				Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	6	LPW
20 C	530 mA	35W	R2	4,140	1	0	1	118	4,446	1	0	1	127	4,473	1	0	1	128
			R3	4,123	1	0	1	118	4,427	1	0	1	126	4,455	1	0	1	127
			R4	4,128	1	0	1	118	4,433	1	0	1	127	4,460	1	0	1	127
			R5	4,381	2	0	1	125	4,704	3	0	1	134	4,734	3	0	1	135
	700 mA	45W	R2	5,271	1	0	1	117	5,660	1	0	1	126	5,696	1	0	2	127
			R3	5,250	1	0	2	117	5,637	1	0	2	125	5,672	1	0	2	126
			R4	5,256	1	0	2	117	5,644	1	0	2	125	5,679	1	0	2	126
			R5	5,578	3	0	1	124	5,990	3	0	1	133	6,027	3	0	1	134
	1000 mA	73W	R2	7,344	1	0	2	101	7,886	2	0	2	108	7,935	2	0	2	109
			R3	7,314	1	0	2	100	7,854	1	0	2	108	7,903	1	0	2	108
			R4	7,322	1	0	2	100	7,863	1	0	2	108	7,912	1	0	2	108
			R5	7,771	3	0	1	106	8,345	3	0	1	114	8,397	3	0	1	115
30 C	530 mA	53W	R2	6,166	1	0	2	116	6,621	1	0	2	125	6,663	1	0	2	126
			R3	6,141	1	0	2	116	6,594	1	0	2	124	6,635	1	0	2	125
			R4	6,148	1	0	2	116	6,602	1	0	2	125	6,643	1	0	2	125
			R5	6,525	3	0	1	123	7,006	3	0	1	132	7,050	3	0	1	133
	700 mA	69W	R2	7,817	2	0	2	113	8,395	2	0	2	122	8,447	2	0	2	122
			R3	7,785	1	0	2	113	8,360	2	0	2	121	8,412	2	0	2	122
			R4	7,794	1	0	2	113	8,370	1	0	2	121	8,422	1	0	2	122
			R5	8,272	3	0	2	120	8,883	3	0	2	129	8,938	3	0	2	130
	1000 mA	108W	R2	10,755	2	0	2	100	11,549	2	0	2	107	11,621	2	0	2	108
			R3	10,711	2	0	2	99	11,502	2	0	2	106	11,574	2	0	2	107
			R4	10,724	2	0	2	99	11,515	2	0	2	107	11,587	2	0	2	107
			R5	11,381	3	0	2	105	12,221	4	0	2	113	12,297	4	0	2	114
40 C	530 mA	71W	R2	8,156	2	0	2	115	8,758	2	0	2	123	8,812	2	0	2	124
			R3	8,122	2	0	2	114	8,722	2	0	2	123	8,776	2	0	2	124
			R4	8,132	1	0	2	115	8,732	1	0	2	123	8,786	1	0	2	124
			R5	8,630	3	0	2	122	9,267	3	0	2	131	9,325	3	0	2	131
	700 mA	94W	R2	10,286	2	0	2	109	11,045	2	0	2	118	11,114	2	0	2	118
			R3	10,244	2	0	2	109	11,000	2	0	2	117	11,069	2	0	2	118
			R4	10,256	2	0	2	109	11,013	2	0	2	117	11,081	2	0	2	118
			R5	10,884	3	0	2	116	11,688	4	0	2	124	11,761	4	0	2	125
	1000 mA	141W	R2	13,923	2	0	2	99	14,951	2	0	2	106	15,045	2	0	2	107
			R3	13,866	2	0	3	98	14,890	2	0	3	106	14,983	2	0	3	106
			R4	13,882	2	0	3	98	14,907	2	0	3	106	15,000	2	0	3	106
			R5	14,733	4	0	2	104	15,821	4	0	2	112	15,920	4	0	2	113
60 C	530 mA	103W	R2	11,996	2	0	2	116	12,882	2	0	2	125	12,963	2	0	2	126
			R3	11,947	2	0	2	116	12,829	2	0	2	125	12,909	2	0	2	125
			R4	11,961	2	0	2	116	12,844	2	0	2	125	12,925	2	0	2	125
			R5	12,694	4	0	2	123	13,632	4	0	2	132	13,717	4	0	2	133
	700 mA	137W	R2	14,927	2	0	2	109	16,029	3	0	3	117	16,130	3	0	3	118
			R3	14,866	2	0	3	109	15,964	2	0	3	117	16,063	2	0	3	117
			R4	14,884	2	0	3	109	15,982	2	0	3	117	16,082	2	0	3	117
			R5	15,796	4	0	2	115	16,962	4	0	2	124	17,068	4	0	2	125
	1000 mA	216W	R2	19,328	3	0	3	89	20,754	3	0	3	96	20,884	3	0	3	97
			R3	19,248	3	0	3	89	20,669	3	0	4	96	20,799	3	0	4	96
			R4	19,271	3	0	3	89	20,693	3	0	4	96	20,823	3	0	4	96
			R5	20,452	4	0	2	95	21,962	4	0	2	102	22,099	4	0	2	102

LITHONIA
One Lithonia Way • Conyers, Georgia 30012 • Phone: 800.279.8041 • www.lithonia.com
© 2012-2016 Acuity Brands Lighting, Inc. All rights reserved.

Performance Data

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$.

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.02
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.01
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.00
$\mathbf{2 5} \mathbf{C}$	$\mathbf{7 7}^{\circ} \mathbf{F}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	1.00
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.99

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the KAD LED platform in a $\mathbf{2 5}^{\circ} \mathbf{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Factor	KAD LED 60C 1000			
	1.0	0.91	0.86	0.76
	KAD LED 40C 1000			
	1.0	0.93	0.88	0.79
	KAD LED 60C 700			
	1.0	0.98	0.97	0.94

Electrical Load

		Current (A)							
Number of LEDs	Drive Curent (mA)	System Watts	120	208	240	277	347	480	
20	530	35	0.30	0.18	0.16	0.15	-	-	
	700	45	0.39	0.23	0.20	0.18	0.15	0.12	
	1000	73	0.61	0.35	0.31	0.27	0.22	0.17	
30	530	53	0.44	0.26	0.23	0.20	-	-	
	700	69	0.58	0.34	0.29	0.26	0.21	0.16	
	1000	108	0.90	0.52	0.46	0.40	0.32	0.24	
40	530	71	0.60	0.35	0.32	0.29	0.21	0.16	
	700	94	0.79	0.46	0.41	0.36	0.27	0.20	
	1000	141	1.18	0.68	0.59	0.52	0.42	0.30	
60	530	103	0.87	0.50	0.44	0.39	0.29	0.22	
	700	137	1.15	0.66	0.58	0.51	0.40	0.29	
	1000	216	1.81	1.04	0.92	0.81	0.63	0.47	

NOTE: All ratings in this table are for a nominal system operated at $25^{\circ} \mathrm{C}$ ambient temperature. Current and power specifications in this table do not include branch circuit derating specified in the National Electrical Code. Please observe all applicable electrical codes and ratings.

Photometric Diagrams

Isofootcandle plots for the KAD LED 60C 1000 40K. Distances are in units of mounting height (20^{\prime}).

FEATURES \& SPECIFICATIONS

INTENDED USE

The energy savings and long life of the KAD LED area luminaire make it a reliable choice for illuminating streets, walkways, parking lots, and surrounding areas.

CONSTRUCTION

Single-piece die-cast, aluminum housing with contoured edges has a $0.12^{\prime \prime}$ nominal wall thickness. Die-cast door frame has an impact-resistant, tempered glass lens that is fully gasketed with one piece tubular silicone.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling

OPTICS

Precision-molded refractive acrylic lenses are available in four distributions. Light engines are available in standard $4000 \mathrm{~K}, 3000 \mathrm{~K}$ or 5000 K (70 CRI) configurations.

ELECTRICAL

Light engine consists of high-efficacy LEDs mounted to a metal-core circuit board and aluminum heat sink, ensuring optimal thermal management and long life. Class 1 electronic driver has a power factor $>90 \%$, THD $<20 \%$, and has an expected life of 100,000 hours with $<1 \%$ failure rate. Easilyserviceable surge protection device meets a minimum Category C Low (per ANSI/IEEE C62.41.2).

INSTALLATION

Included universal mounting block and extruded aluminum arm facilitate quick and easy installation using nearly any existing drilling pattern. Stainless steel bolts fasten the luminaire to the mounting block securing it to poles or walls. The KAD LED can withstand up to a 1.5 G vibration load rating per ANSI C136.31. The KAD LED also utilizes the standard K-Series (Template \#5) for pole drilling.

LISTINGS

CSA certified to U.S. and Canadian standards. Luminaire is IP65 rated. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient.
DesignLights Consortium ${ }^{\circledR}$ (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

WARRANTY

5-year limited warranty. Complete warranty terms located at
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

KADRD LED
 LED Retrofit Kit

-OxTROUR

Specifications

EPA:	$\begin{gathered} 1.2 \mathrm{ft}^{2} \\ \left(0.11 \mathrm{~m}^{2}\right) \end{gathered}$
Length:	$\begin{gathered} 17-1 / 2^{\prime \prime} \\ (44.5 \mathrm{~cm}) \end{gathered}$
Width:	$\begin{aligned} & 17-1 / 2^{\prime \prime} \\ & (44.5 \mathrm{~cm}) \end{aligned}$
Height:	$\begin{aligned} & 7-1 / 8^{\prime \prime} \\ & (18.1 \mathrm{~cm}) \end{aligned}$
Weight (max):	$\begin{gathered} 13 \mathrm{lbs} . \\ (5.9 \mathrm{~kg}) \end{gathered}$

Number
Notes
Type \quad 'SB1'

Introduction

The Contour ${ }^{\circledR}$ Series luminaires offer traditional square dayforms with softened edges for a versatile look that complements many applications. The KADRD LED retrofits any existing 100-400W metal halide or high pressure sodium KAD into a high-performance LED luminaire, while realizing typical energy savings up to 65% with expected service life up to 100,000 hours. The KADRD LED retrofit door simply replaces the existing KAD door containing the glass lens and installs in minutes.

Ordering Information

EXAMPLE: KADRD LED 40C 1000 40K R5 MVOLT DDBXD
KADRD LED

Accessories	Notes
krawcu Whiesuaddacesor	
For more oontolo potions,	

LIGHTING.

Lumen Output

 differ as a result of end-user environment and application. Actual wattage may differ by $+/-8 \%$ when operating between $120-480 \mathrm{~V}+/-10 \%$. Contact factory for performance data on any configurations not shown here.

LEDs	Drive Current (mA)	System Watts	$\begin{aligned} & \text { Dist. } \\ & \text { Type } \end{aligned}$	30K					40K					50K				
				Lumens	B	U	6	LPW	Lumens	B	U	G	LPW	Lumens	B	U	G	LPW
20 C	530 mA	35W	R2	4,140	1	0	1	115	4,446	1	0	1	123	4,473	1	0	1	124
			R3	4,123	1	0	1	115	4,427	1	0	1	123	4,455	1	0	1	124
			R4	4,128	1	0	1	115	4,433	1	0	1	123	4,460	1	0	1	124
			R5	4,381	2	0	1	122	4,704	2	0	1	131	4,734	2	0	1	131
	700 mA	46 W	R2	5,271	1	0	1	115	5,660	1	0	1	123	5,696	1	0	1	124
			R3	5,250	1	0	2	114	5,637	1	0	2	123	5,672	1	0	2	123
			R4	5,256	1	0	2	114	5,644	1	0	2	123	5,679	1	0	2	123
			R5	5,578	3	0	1	121	5,990	3	0	1	130	6,027	3	0	1	131
	1000 mA	73W	R2	7,344	1	0	2	101	7,886	1	0	2	108	7,935	1	0	2	109
			R3	7,314	1	0	2	100	7,854	1	0	2	108	7,903	1	0	2	108
			R4	7,322	1	0	2	100	7,863	1	0	2	108	7,912	1	0	2	108
			R5	7,771	3	0	1	106	8,345	3	0	1	114	8,397	3	0	1	115
$30 C$	530 mA	53 W	R2	6,166	1	0	2	116	6,621	1	0	2	125	6,663	1	0	2	126
			R3	6,141	1	0	2	116	6,594	1	0	2	124	6,635	1	0	2	125
			R4	6,148	1	0	2	116	6,602	1	0	2	125	6,643	1	0	2	125
			R5	6,525	3	0	1	123	7,006	3	0	1	132	7,050	3	0	1	133
	700 mA	70W	R2	7,817	1	0	2	112	8,395	2	0	2	120	8,447	1	0	2	121
			R3	7,785	1	0	2	111	8,360	1	0	2	119	8,412	1	0	2	120
			R4	7,795	1	0	2	111	8,370	1	0	2	120	8,422	1	0	2	120
			R5	8,272	3	0	1	118	8,883	3	0	2	127	8,938	3	0	1	128
	1000 mA	108W	R2	10,755	2	0	2	100	11,549	2	0	2	107	11,621	2	0	2	108
			R3	10,711	2	0	2	99	11,502	2	0	2	106	11,574	2	0	2	107
			R4	10,724	2	0	2	99	11,515	2	0	2	107	11,587	2	0	2	107
			R5	11,381	3	0	2	105	12,221	3	0	2	113	12,297	3	0	2	114
$40 C$	530 mA	71W	R2	8,156	2	0	2	115	8,758	2	0	2	123	8,812	2	0	2	124
			R3	8,122	1	0	2	114	8,722	2	0	2	123	8,776	2	0	2	124
			R4	8,132	1	0	2	115	8,732	1	0	2	123	8,786	1	0	2	124
			R5	8,630	3	0	2	122	9,267	3	0	2	131	9,325	3	0	2	131
	700 mA	94W	R2	10,286	2	0	2	109	11,045	2	0	2	118	11,114	2	0	2	118
			R3	10,244	2	0	2	109	11,000	2	0	2	117	11,069	2	0	2	118
			R4	10,256	2	0	2	109	11,013	2	0	2	117	11,081	2	0	2	118
			R5	10,884	3	0	2	116	11,688	3	0	2	124	11,761	3	0	2	125
	1000 mA	141 W	R2	13,923	2	0	2	99	14,951	2	0	2	106	15,045	2	0	2	107
			R3	13,866	2	0	3	98	14,890	2	0	3	106	14,983	2	0	3	106
			R4	13,882	2	0	3	98	14,907	2	0	3	106	15,000	2	0	3	106
			R5	14,733	4	0	2	104	15,821	4	0	2	112	15,920	4	0	2	113
$60 C$	530 mA	103W	R2	11,997	2	0	2	116	12,882	2	0	2	125	12,963	2	0	2	126
			R3	11,947	2	0	2	116	12,829	2	0	2	125	12,909	2	0	2	125
			R4	11,961	2	0	2	116	12,844	2	0	2	125	12,925	2	0	2	125
			R5	12,694	4	0	2	123	13,632	4	0	2	132	13,717	4	0	2	133
	700 mA	134W	R2	14,927	3	0	3	109	16,029	3	0	3	117	16,130	3	0	3	118
			R3	14,866	3	0	3	109	15,964	2	0	3	117	16,063	2	0	3	117
			R4	14,884	3	0	3	109	15,982	2	0	3	117	16,082	2	0	3	117
			R5	15,796	4	0	2	115	16,962	4	0	2	124	17,068	4	0	2	125

LITHONIA
One Lithonia Way • Conyers, Georgia 30012 • Phone: 800.279.8041 • www.lithonia.com
KADRD-LED
LIGHTING.

Performance Data

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$.

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.02
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.01
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.00
$\mathbf{2 5} \mathbf{C}$	$\mathbf{7 7}^{\circ} \mathbf{F}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	1.00
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.99

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the KADRD LED platform in a $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Factor	KADRD LED 40C 1000			
	1.0	0.93	0.88	0.79
	KADRD LED 60C 700			
	1.0	0.98	0.97	0.94

Electrical Load

			Current (A)							
Number of LEDs	Dive Current (mA)	System Watts	120	208	240	277	347	480		
20	530	35	0.30	0.18	0.16	0.15	-	-		
	700	46	0.39	0.23	0.20	0.18	0.15	0.12		
	1000	73	0.61	0.35	0.31	0.27	0.22	0.17		
	530	53	0.44	0.26	0.23	0.20	-	-		
	700	70	0.58	0.34	0.29	0.26	0.21	0.16		
	1000	108	0.90	0.52	0.46	0.40	0.32	0.24		
40	530	71	0.60	0.35	0.32	0.29	0.21	0.16		
	700	94	0.79	0.46	0.41	0.36	0.27	0.20		
	1000	141	1.18	0.68	0.59	0.52	0.42	0.30		
60	530	103	0.87	0.50	0.44	0.39	0.29	0.22		
	700	134	1.15	0.66	0.58	0.51	0.40	0.29		

NOTE: All ratings in this table are for a nominal system operated at $25^{\circ} \mathrm{C}$ ambient temperature. Current and power specifications in this table do not include branch circuit derating specified in the National Electrical Code. Please observe all applicable electrical codes and ratings.

Photometric Diagrams

Isofootcandle plots for the KADRD LED 40C 530. Distances are in units of mounting height (20^{\prime}).

FEATURES \& SPECIFICATIONS

INTENDED USE

The energy savings and long life of the KADRD LED area luminaire make it a reliable choice for illuminating streets, walkways, parking lots, and surrounding areas.

CONSTRUCTION

Single-piece die-cast, aluminum housing with contoured edges has a $0.12^{\prime \prime}$ nominal wall thickness. Die-cast door frame is fully gasketed with one-piece tubular silicone.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish
that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage
process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate
changes without cracking or peeling.

OPTICS

Precision-molded refractive acrylic lenses are available in four distributions. Light engines are available in standard 4000 K or optional 3000 K or $5000 \mathrm{~K}(70 \mathrm{CRI}$) configurations

ELECTRICAL

Light engine consists of high-efficacy LEDs mounted to a metal-core circuit board and aluminum heat sink, ensuring optimal thermal management and long life. Class 1 electronic driver has a power factor $>90 \%$, THD $<20 \%$, and has an expected life of 100,000 hours with $<1 \%$ failure rate. Easily-serviceable surge protection device meets a minimum Category C Low (per ANSI/IEEE C62.41.2).

INSTALLATION

Retrofit only--mounts directly on existing KAD or KAD-LED housing.

LISTINGS

CSA certified to U.S. and Canadian standards. Luminaire is IP65 rated. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient. DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www. designlights.org to confirm which versions are qualified.

WARRANTY

5 -year limited warranty. Complete warranty terms located at
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Actual performance may differ as a result of end-user environment and application All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

L/THON/A
L/GHTING.

Stock configurations are offered for shorter lead times:

Standard Part Number

KAD LED 30C 1000 40K R3 MVOLT PUMBAK09 DDBXD KAD LED 30C 1000 40K R5 MVOLT PUMBAK09 DDBXD KAD LED 40C 1000 40K R3 MV0LT PUMBAK09 DDBXD KAD LED 40C 1000 40K R5 MV0LT PUMBAK09 DDBXD KAD LED 30C 1000 40K R3 MVOLT PUMBAK09 PIRH DDBXD KAD LED 30C 1000 40K R5 MVOLT PUMBAK09 PIRH DDBXD KAD LED 40C 1000 40K R3 MVOLT PUMBAK09 PIRH DDBXD KAD LED 40C 1000 40K R5 MVOLT PUMBAK09 PIRH DDBXD

Stock Part Number

KADL 30C 40K R3 KADL 30C 40K R5 KADL 40C 40K R3 KADL 40C 40K R5 KADL 30C 40K R3 PIRH KADL 30C 40K R5 PIRH KADL 40C 40K R3 PIRH KADL 40C 40K R5 PIRH

Accessories

Ordered and shipped separately DLL127F 1.5 JU Photocell - SSL twist-lock (120-277V) ${ }^{14}$ DLL347F 1.5 CUL JU Photocell - SSL twist-lock (347V) ${ }^{14}$ DLL480F 1.5 CUL JU Photocell - SSL twist-lock (480V) ${ }^{14}$ DSHORT SBKU Shorting cap ${ }^{14}$ KADLEDHS 20C U Houseside shield for 20 LED unit KADLEDHS 30CU Houseside shield for 30 LED unit KADLEDHS 40CU Houseside shield for 40 LED unit KADLEDHS 60CU Houseside shield for 60 LED unit KMA DDBXD U Mast arm adapter (specify finish) KADWG U Wire guard accessory
PUMBAK DDBXD U* Square and round pole universal mounting bracket adaptor (specify finish)
For more control options, visit DTL and ROAM online. *Round pole top must be 3.25 " O.D. minimum.

NOTES

120 C or 30 C LED are not available with 530 Drive Current and 347 V or 480 V
2 Not available with 347 voltage
3 MVOLT driver operates on any line voltage from $120-277 \mathrm{~V}(50 / 60 \mathrm{~Hz})$. Single fuse (SF) requires 120, 277 or 347 voltage option. Double fuse (DF) requires 208, 240 or 480 voltage option.
4 Maximum ambient temperature with 347 V or 480 V is $30^{\circ} \mathrm{C}$
5 Not available with 530 mA .
$6 \quad 9$ " or $12^{\prime \prime}$ arm is required when two or more luminaires are oriented on a 90° drilling pattern.
7 Available as a separate combination accessory: PUMBAK (finish) U.
8 Mounting must be restricted to $\pm 45^{\circ}$ from horizontal aim per ANSI C136.10-2010.
9 PIR and PIR1FC3V specify the SensorSwitch SBGR-10-ODP control; PIRH and PIRH1FC3V specify the SensorSwitch SBGR-6-ODP control; see Outdoor Control Technical Guide for details. Dimming driver standard.
10 Requires an additional switched circuit with same phase as main luminaire power. Supply circuit and control circuit are required to be in the same phase.
11 Dimming driver standard. MVOLT only. Not available with $347 \mathrm{~V}, 480 \mathrm{~V}$, PER5, PER7 or PNMT options.
12 Dimming driver standard. MVOLT only. Not available with $347 \mathrm{~V}, 480 \mathrm{~V}$, PER5, PER7, BL30 or BL50.
13 Also available as a separate accessory; see Accessories information
14 Requires luminaire to be specified with PER option. Ordered and shipped as a separate line item from Acuity Brands Controls.

Tenon Mounting Slipfitter **

Tenon 0.D.	Single Unit	2 at 180°	2 at $90^{\circ} \dagger$	3 at 120°	3 at $90^{\circ} \dagger$	4 at $90^{\circ}{ }^{\dagger}$
$2-3 / 8^{\prime \prime}$	$\mathrm{T} 20-190$	$\mathrm{~T} 20-280$	$\mathrm{~T} 20-290$	$\mathrm{~T} 20-320^{\dagger}$	$\mathrm{T} 20-390$	$\mathrm{~T} 20-490$
$2-7 / 8^{\prime \prime}$	$\mathrm{T} 25-190$	$\mathrm{~T} 25-280$	$\mathrm{~T} 25-290$	$\mathrm{~T} 25-320$	$\mathrm{~T} 25-390$	$\mathrm{~T} 25-490$
$4^{\prime \prime}$	$\mathrm{T} 35-190$	$\mathrm{~T} 35-280$	$\mathrm{~T} 35-290$	$\mathrm{~T} 35-320$	$\mathrm{~T} 35-390$	$\mathrm{~T} 35-490$

**For round pole mounting (RPDXX) only. t Requires 9" or 12" arm.

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

LEDs	Drive Current (mA)	System Watts	Dist. Type	$\begin{gathered} 30 \mathrm{~K} \\ (3000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					40 K$(4000 \mathrm{~K}, 70 \mathrm{CRI})$					($5000 \mathrm{~K}, 70 \mathrm{CRI}$)				
				Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	6	LPW
20 C	530 mA	35W	R2	4,140	1	0	1	118	4,446	1	0	1	127	4,473	1	0	1	128
			R3	4,123	1	0	1	118	4,427	1	0	1	126	4,455	1	0	1	127
			R4	4,128	1	0	1	118	4,433	1	0	1	127	4,460	1	0	1	127
			R5	4,381	2	0	1	125	4,704	3	0	1	134	4,734	3	0	1	135
	700 mA	45W	R2	5,271	1	0	1	117	5,660	1	0	1	126	5,696	1	0	2	127
			R3	5,250	1	0	2	117	5,637	1	0	2	125	5,672	1	0	2	126
			R4	5,256	1	0	2	117	5,644	1	0	2	125	5,679	1	0	2	126
			R5	5,578	3	0	1	124	5,990	3	0	1	133	6,027	3	0	1	134
	1000 mA	73W	R2	7,344	1	0	2	101	7,886	2	0	2	108	7,935	2	0	2	109
			R3	7,314	1	0	2	100	7,854	1	0	2	108	7,903	1	0	2	108
			R4	7,322	1	0	2	100	7,863	1	0	2	108	7,912	1	0	2	108
			R5	7,771	3	0	1	106	8,345	3	0	1	114	8,397	3	0	1	115
30 C	530 mA	53W	R2	6,166	1	0	2	116	6,621	1	0	2	125	6,663	1	0	2	126
			R3	6,141	1	0	2	116	6,594	1	0	2	124	6,635	1	0	2	125
			R4	6,148	1	0	2	116	6,602	1	0	2	125	6,643	1	0	2	125
			R5	6,525	3	0	1	123	7,006	3	0	1	132	7,050	3	0	1	133
	700 mA	69W	R2	7,817	2	0	2	113	8,395	2	0	2	122	8,447	2	0	2	122
			R3	7,785	1	0	2	113	8,360	2	0	2	121	8,412	2	0	2	122
			R4	7,794	1	0	2	113	8,370	1	0	2	121	8,422	1	0	2	122
			R5	8,272	3	0	2	120	8,883	3	0	2	129	8,938	3	0	2	130
	1000 mA	108W	R2	10,755	2	0	2	100	11,549	2	0	2	107	11,621	2	0	2	108
			R3	10,711	2	0	2	99	11,502	2	0	2	106	11,574	2	0	2	107
			R4	10,724	2	0	2	99	11,515	2	0	2	107	11,587	2	0	2	107
			R5	11,381	3	0	2	105	12,221	4	0	2	113	12,297	4	0	2	114
40 C	530 mA	71W	R2	8,156	2	0	2	115	8,758	2	0	2	123	8,812	2	0	2	124
			R3	8,122	2	0	2	114	8,722	2	0	2	123	8,776	2	0	2	124
			R4	8,132	1	0	2	115	8,732	1	0	2	123	8,786	1	0	2	124
			R5	8,630	3	0	2	122	9,267	3	0	2	131	9,325	3	0	2	131
	700 mA	94W	R2	10,286	2	0	2	109	11,045	2	0	2	118	11,114	2	0	2	118
			R3	10,244	2	0	2	109	11,000	2	0	2	117	11,069	2	0	2	118
			R4	10,256	2	0	2	109	11,013	2	0	2	117	11,081	2	0	2	118
			R5	10,884	3	0	2	116	11,688	4	0	2	124	11,761	4	0	2	125
	1000 mA	141W	R2	13,923	2	0	2	99	14,951	2	0	2	106	15,045	2	0	2	107
			R3	13,866	2	0	3	98	14,890	2	0	3	106	14,983	2	0	3	106
			R4	13,882	2	0	3	98	14,907	2	0	3	106	15,000	2	0	3	106
			R5	14,733	4	0	2	104	15,821	4	0	2	112	15,920	4	0	2	113
60 C	530 mA	103W	R2	11,996	2	0	2	116	12,882	2	0	2	125	12,963	2	0	2	126
			R3	11,947	2	0	2	116	12,829	2	0	2	125	12,909	2	0	2	125
			R4	11,961	2	0	2	116	12,844	2	0	2	125	12,925	2	0	2	125
			R5	12,694	4	0	2	123	13,632	4	0	2	132	13,717	4	0	2	133
	700 mA	137W	R2	14,927	2	0	2	109	16,029	3	0	3	117	16,130	3	0	3	118
			R3	14,866	2	0	3	109	15,964	2	0	3	117	16,063	2	0	3	117
			R4	14,884	2	0	3	109	15,982	2	0	3	117	16,082	2	0	3	117
			R5	15,796	4	0	2	115	16,962	4	0	2	124	17,068	4	0	2	125
	1000 mA	216W	R2	19,328	3	0	3	89	20,754	3	0	3	96	20,884	3	0	3	97
			R3	19,248	3	0	3	89	20,669	3	0	4	96	20,799	3	0	4	96
			R4	19,271	3	0	3	89	20,693	3	0	4	96	20,823	3	0	4	96
			R5	20,452	4	0	2	95	21,962	4	0	2	102	22,099	4	0	2	102

LITHONIA
One Lithonia Way • Conyers, Georgia 30012 • Phone: 800.279.8041 • www.lithonia.com
© 2012-2016 Acuity Brands Lighting, Inc. All rights reserved.

Performance Data

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$.

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.02
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.01
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.00
$\mathbf{2 5} \mathbf{C}$	$\mathbf{7 7}^{\circ} \mathbf{F}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	1.00
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.99

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the KAD LED platform in a $\mathbf{2 5}^{\circ} \mathbf{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Factor	KAD LED 60C 1000			
	1.0	0.91	0.86	0.76
	KAD LED 40C 1000			
	1.0	0.93	0.88	0.79
	KAD LED 60C 700			
	1.0	0.98	0.97	0.94

Electrical Load

		Current (A)							
Number of LEDs	Drive Curent (mA)	System Watts	120	208	240	277	347	480	
20	530	35	0.30	0.18	0.16	0.15	-	-	
	700	45	0.39	0.23	0.20	0.18	0.15	0.12	
	1000	73	0.61	0.35	0.31	0.27	0.22	0.17	
30	530	53	0.44	0.26	0.23	0.20	-	-	
	700	69	0.58	0.34	0.29	0.26	0.21	0.16	
	1000	108	0.90	0.52	0.46	0.40	0.32	0.24	
40	530	71	0.60	0.35	0.32	0.29	0.21	0.16	
	700	94	0.79	0.46	0.41	0.36	0.27	0.20	
	1000	141	1.18	0.68	0.59	0.52	0.42	0.30	
60	530	103	0.87	0.50	0.44	0.39	0.29	0.22	
	700	137	1.15	0.66	0.58	0.51	0.40	0.29	
	1000	216	1.81	1.04	0.92	0.81	0.63	0.47	

NOTE: All ratings in this table are for a nominal system operated at $25^{\circ} \mathrm{C}$ ambient temperature. Current and power specifications in this table do not include branch circuit derating specified in the National Electrical Code. Please observe all applicable electrical codes and ratings.

Photometric Diagrams

Isofootcandle plots for the KAD LED 60C 1000 40K. Distances are in units of mounting height (20^{\prime}).

FEATURES \& SPECIFICATIONS

INTENDED USE

The energy savings and long life of the KAD LED area luminaire make it a reliable choice for illuminating streets, walkways, parking lots, and surrounding areas.

CONSTRUCTION

Single-piece die-cast, aluminum housing with contoured edges has a $0.12^{\prime \prime}$ nominal wall thickness. Die-cast door frame has an impact-resistant, tempered glass lens that is fully gasketed with one piece tubular silicone.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling

OPTICS

Precision-molded refractive acrylic lenses are available in four distributions. Light engines are available in standard $4000 \mathrm{~K}, 3000 \mathrm{~K}$ or 5000 K (70 CRI) configurations.

ELECTRICAL

Light engine consists of high-efficacy LEDs mounted to a metal-core circuit board and aluminum heat sink, ensuring optimal thermal management and long life. Class 1 electronic driver has a power factor $>90 \%$, THD $<20 \%$, and has an expected life of 100,000 hours with $<1 \%$ failure rate. Easilyserviceable surge protection device meets a minimum Category C Low (per ANSI/IEEE C62.41.2).

INSTALLATION

Included universal mounting block and extruded aluminum arm facilitate quick and easy installation using nearly any existing drilling pattern. Stainless steel bolts fasten the luminaire to the mounting block securing it to poles or walls. The KAD LED can withstand up to a 1.5 G vibration load rating per ANSI C136.31. The KAD LED also utilizes the standard K-Series (Template \#5) for pole drilling.

LISTINGS

CSA certified to U.S. and Canadian standards. Luminaire is IP65 rated. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient.
DesignLights Consortium ${ }^{\circledR}$ (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

WARRANTY

5-year limited warranty. Complete warranty terms located at
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Specifications

 Number
Introduction

The Contour ${ }^{\circledR}$ Series luminaires offer traditional square dayforms with softened edges for a versatile look that complements many applications.

The CSXW LED combines the latest in LED technology with the familiar aesthetic of the Contour® Series for stylish, high-performance illumination that lasts. It is ideal for replacing 100400W metal halide in wall-mounted applications with typical energy savings of 80% and expected service life of over 100,000 hours.

Mounting Detail

Accessories

Ordered and shipped separately
CSXWBBW DDBXD U Back box accessory (specify finish) CSXWWG U CSXWVGU

Wire guard accessory Vandal guard accessory

NOTES

1 Configured with $4000 \mathrm{~K}(/ 40 \mathrm{~K})$ provides the shortest lead times. Consult factory for 5000 K (/50K) lead times.
2 MVOLT driver operates on any line voltage from 120$277 \mathrm{~V}(50 / 60 \mathrm{~Hz})$. Specify $120,208,240$ or 277 options only when ordering with fusing (SF, DF options) or photocontrol (PE option).
3 Available with 700 mA options only (30C 700).
4 Also available as a separate accessory; see Accessories information at left.
5 Photocontrol (PE) requires 120, 208, 240, 277 or 347 voltage option.
6 Must be ordered with fixture; cannot be field installed.
7 Single fuse (SF) requires 120, 277 or 347 voltage option. Double fuse (DF) requires 208, 240 or 480 voltage option.

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

LEDs	Drive Current (mA)	Performance Package	System Watts	$\begin{aligned} & \text { Dist. } \\ & \text { Type } \end{aligned}$	40K					50K				
					Lumens	${ }^{8}$	U	6	LPW	Lumens	B	U	6	LPW
30 C	700 mA	30C700 --K	69W	T2M	7,561	2	0	2	110	7,608	2	0	2	110
				T3M	7,981	2	0	2	116	8,031	2	0	2	116
				T4M	7,924	1	0	2	115	7,973	2	0	2	116
				TFTM	8,083	1	0	2	117	8,134	1	0	2	118
	1000 mA	30C 1000--K	104W	T2M	11,321	2	0	2	109	10,422	2	0	2	100
				T3M	11,528	2	0	2	111	11,001	2	0	2	106
				T4M	11,735	2	0	2	113	10,922	2	0	2	105
				TFTM	11,942	2	0	2	115	11,142	2	0	2	107

Lumen Ambient Temperature (LAT) Multipliers
Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$.

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.02
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.01
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.00
$\mathbf{2 5 ^ { \circ } \mathrm { C }}$	$\mathbf{7 7 ^ { \circ } \mathbf { F }}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	1.00
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.99

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the CSXW LED platform in $2 \mathbf{5 5}^{\circ} \mathrm{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11)
o calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Mactor	1.0	0.94	0.91	0.85

Electrical Load

	Current (A)							
Number of LEDs	Drive Current (mA)	System Watts	120 V	208 V	240 V	277 V	347 V	480 V
30 C	700	69 W	0.695	0.412	0.367	0.331	0.247	0.186
1000	104 W	1.034	0.599	0.528	0.472	0.382	0.302	

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's CSXW homepage.
Isofootcandle plots for the CSXW LED 30 C 1000 40K. Distances are in units of mounting height (20^{\prime}).

ELECTRICAL

Light engine consists of 30 high-efficacy LEDs mounted to a metal-core circuit board to maximize heat dissipation and promote long life (100,000 hrs at $40^{\circ} \mathrm{C}, \mathrm{L} 70$). Class 1 electronic driver has a power factor $>90 \%$, THD $<20 \%$, and has an expected life of 100,000 hours with $<1 \%$ failure rate. Easily-serviceable surge protection device meets a minimum Category C ow operation (per ANSI/IEEE C62.41.2)

INSTALLATION

Universal mounting mechanism with integral mounting support allows fixture to hinge down.
Bubble level provides correct alignment with every installation.

LISTINGS

CSA Certified to U.S. and Canadian standards. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient. Light engine is IP66 rated. Luminaire is IP65 rated.
DesignLights Consortium ${ }^{\circledR}$ (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org to confirm which versions are qualified.

WARRANTY

Five year limited warranty. Full warranty terms located at www.acuitybrands.com/
CustomerResources/Terms_and_conditions.aspx.
Note: Specifications subject to change without notice
Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$.

Luminaire Type:
Catalog Number
(autopopulated)

Gotham Architectural Downlighting LED Downlights

6" Evo ${ }^{\circledR}$
Downlight

Solid-State Lighting

OPTICAL SYSTEM

- \quad Self-flanged or flangeless semi-specular, matte-diffuse or specular finishing trim
- Patented Bounding Ray ${ }^{\text {TM }}$ optical design (U.S. Patent No. 5,800,050)
- 45° cutoff to source and source image
- Top-down flash characteristic
- Polycarbonate lens integral to light engine

MECHANICAL SYSTEM

- 16-gauge galvanized steel construction; maximum 1-1/2" ceiling thickness
- Telescopic mounting bars maximum of 32 " and minimum of 15 ", preinstalled, 4 " vertical adjustment
- Toolless adjustments post installation
- Junction box capacity: 8 (4 in, 4 out) 12 AWG rated for $90^{\circ} \mathrm{C}$
- Light engine and driver accessible through aperture
- Injection molded mud ring includedwith flangeless trims. Ships separately. Installs independently of the mounting frame to reduce cracks in plaster due to vibration.

ELECTRICAL SYSTEM

- Fully serviceable and upgradeable lensed LED light engine
- 70% lumen maintenance at 60,000 hours
- Tested according to LM-79 and LM-80 standards
- Overload and short circuit protected
- 2.5 SDCM; 85 CRI typical, 90+CRI optional

LISTINGS

- Fixtures are CSA certified to meet US and Canadian standards; wet location, covered ceiling

WARRANTY

- 5-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/CustomerResources/Terms and conditions.aspx

Note: Actual performance may differ as a result of end user environment and application All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$.

EXAMPLE: EVO 35/10 6AR MWD LSS MVOLT EZ1

Series	Color temperature	Nominal lumen values	Aperture/Trim color	Trim Style	Distribution	Finish	Voltage
EVO	27/ 2700 K $30 /$ 3000 K $35 /$ 3500 K $40 /$ 4000 K	10 1000 lumens 15 1500 lumens 20 2000 lumens 25 2500 lumens 30 3000 lumens 35 3500 lumens 40 4000 lumens 45 4500 lumens	6AR Clear 6PR Pewter 6WTR Wheat 6GR Gold 6WR 1 White 6BR 1 Black 6WRAMF 1 White anti- microbial	(blank) Self-flanged FL Flangeless	VND Very narrow $(0.5 \mathrm{~s} / \mathrm{mh})$ ND Narrow $(0.7$ s/mh $)$ MD Medium MWD $(0.9 \mathrm{~s} / \mathrm{mh})$ Medium wide $(1.0 \mathrm{~s} / \mathrm{mh})$ WD Wide $(1.2 \mathrm{~s} /$ $\mathrm{mh})$ 	LSS Semi-specular LD Matte-diffuse LS Specular	$\begin{aligned} & \hline \text { MVOLT } \\ & 120 \\ & 277 \\ & 347^{2} \end{aligned}$

Driver ${ }^{3}$		Options			
EZ10	eldoLED ECOdrive 0-10v dimming driver. Minimum dimming level 10\%	SF	Single fuse. Specify 120V or	BGTD	Bodine generator transfer device.
EZ1	eldoLED ECOdrive 0-10V dimming driver. Minimum dimming level 1%		277V.		Specify 120V or 277V.
EZB	eldoLED SOLOdrive 0-10V dimming driver. Minimum dimming level $<1 \%$.	TRW ${ }^{6}$	White painted flange	CRI90	High CRI (90+)
EDAB	eldoLED SOLOdrive DALI dimming driver. Minimum dimming level $<1 \%$.	TRBL ${ }^{7}$	Black painted flange	CP ${ }^{10}$	Chicago plenum. Specify 120V
EDXB	eldoLED POWERdrive DMX with RDM (remote device management). Minimum dimming level $<1 \%$. Includes termination resistor. Refer to	$E L^{8}$	Emergency battery pack with integral test switch	RRL	or 277 V . RELOC ${ }^{\circledR}$-ready luminaire connec-
	DMXR Manual.	ELR ${ }^{8}$	Emergency battery pack with		tors enable a simple and consis-
EXA1	XPoint Wireless, eldoLED ECOdrive 1\% dimming, 0-10V. Refer to XPoint tech sheet.	NPS80EZ ${ }^{5}$	remote test switch nLight ${ }^{\circledR}$ dimming pack controls		tent factory installed option across all ABL Iuminaire brands. Refer to
EXAB	XPoint Wireless, eldoLED SOLOdrive <1\% dimming, 0-10V. Refer to XPoint tech sheet.	NPS80EZER ${ }^{5,9}$	$0-10 \mathrm{~V}$ eldoLED drivers. nLigh ${ }^{\circledR}$ dimming pack controls		RRL for complete nomenclature.
ECOS2 ${ }^{4,5}$	Lutron ${ }^{\circledR} \mathrm{Hi}$-Lume ${ }^{\circledR}$ 2-wire forward-phase dimming driver. Minimum dimming level 1%. Minimum lumen 1000/Maximum lumen 3000.		$0-10 \mathrm{~V}$ eldoLED drivers. ER controls fixtures on emergency		
ECOS3 ${ }^{4,5}$	Lutron ${ }^{\circledR}$ Hi-Lume ${ }^{\circledR}$ 3-wire or EcoSystem ${ }^{\circledR}$ dimming driver. Minimum dimming level 1%. Minimum Iumen 1000/Maximum Iumen 4500.		circuit.		

All dimensions are inches (centimeters) unless otherwise noted.

Aperture: 6-1/4" (15.9)
Ceiling Opening: 7-1/8" (18.1) self-flanged 7-1/4" (18.4) flangeless
Overlap trim: 7-1/2" (19.1)

dIMENSIONS FOR CHICAGO PLENUM

WATTAGE CONSUMPTION MATRIX			
LUMENS	LM ACTUAL	WATTAGE	LUMENS per WATT
$\mathbf{1 0 0 0}$	1,059	11.8	90.1
$\mathbf{1 5 0 0}$	1,572	18.5	85.0
$\mathbf{2 0 0 0}$	2,058	23.2	88.9
$\mathbf{2 5 0 0}$	2,612	29.5	88.5
$\mathbf{3 0 0 0}$	3,077	36.6	84.1
$\mathbf{3 5 0 0}$	3,591	42.1	85.3
$\mathbf{4 0 0 0}$	4,046	48.1	84.2
$\mathbf{4 5 0 0}$	4,555	46.9	97.1

EMERGENCY LUMEN OUTPUT		
LUMENS	WATTAGE	INITIAL OUTPUT
$\mathbf{1 0 0 0}$	9.6	1000
$\mathbf{1 5 0 0}$	9.6	1000
2000	9.6	1000
2500	9.6	1000
3000	9.6	1000
$\mathbf{3 5 0 0}$	9.6	1000
4000	9.6	1000
4500	9.6	1000

ACCESSORIES order as separate catalog numbers (shipped separately)

SCA6	Sloped ceiling adapter. Degree of slope must be specified (5D, 10D, 15D, 20D, 25D, 30D). Ex: SCA6 10D. Refer to TECH-190.
CTA4-8 YK	Ceiling thickness adapter (extends mounting frame to accommodate ceiling thickness up to 5"). Adds ~4" to fixture height.
GVRT	Vandal-resistant trim accessory. Refer to TECH-200.
ISD BC	0-10V wallbox dimmer. Refer to ISD-BC.

ORDERING NOTES

1. Not available with finishes.
2. Not available with EL or ELR options.
3. Refer to $\mathrm{TECH}-240$ for compatible dimmers.
4. Not available with nLight ${ }^{\circledR}$ and XPoint options.
5. Specify voltage. ECOS2 not available in 277 V .
6. Not available with white reflector. Not applicable with FL option.
7. Not available with black reflector. Not applicable with FL option.
8. For dimensional changes, refer to TECH-140. Not available with 347V.
9. For use with generator supply EM power. Will require an emergency hot feed and normal hot feed.
10. ELR not available. CP \& ECOS2-3000 Iumen max. CP \& ECOS3-4000 lumen max. CP, ECOS2/ECOS3 \& EL - 2000 lumen max.

EVO 35/35 6AR LS INPUT WATTS: 42.1, DELIVERED LUMENS: 3591, LM/W=85.3, $1.05 \mathrm{~S} / \mathrm{MH}$, TEST NO. LTL27767

	Ave	Lumens	Zone	Lumens	\% Lamp
0	3400		$0^{\circ}-30^{\circ}$	2579.3	71.8
5	3390	324	$0^{\circ}-40^{\circ}$	3399.8	94.7
15	3497	981	$0^{\circ}-60^{\circ}$	3586.3	99.9
25	2830	1274	$0^{\circ}-90^{\circ}$	3590.5	100.0
35	1335	820	$90^{\circ}-180^{\circ}$	0.0	0.0
45	193	177	$0^{\circ}-180^{\circ}$	3590.5	*100.0
55	5	9	*Efficiency		
65	2	2			

pf	20\%								
pc	80\%			70\%			50\%		
pw	50\% 30\% 10\%			50\% 30\% 10\%			50\% 30\% 10\%		
0	119	119	119	116	116	116	111	111	111
1	111	108	106	109	106	104	105	103	101
2	103	99	96	101	98	95	98	95	93
3	96	91	87	95	90	87	92	88	85
4	90	84	80	89	84	80	87	82	79
5	84	78	74	83	78	74	81	77	73
6		73	69	78	72	68	77	72	68
7	74	68	64	73	68	64	72	67	63
8	70	64	60	69	63	59	68	63	59
9	66	60	56	65	60	56	64	59	55
10	62	56	52	62	56	52	61	56	52

EVO 35/20 6AR LS INPUT WATTS: 23.2, DELIVERED LUMENS: 2058, LM/W=88.7, 1.02 S/MH, TEST NO. LTL27777

LUMEN OUTPUT MULTIPLIER - CRI	
$\mathbf{C R I}$	FACTOR
$\mathbf{8 0} \mathbf{~ C R I}$	1
$\mathbf{9 0} \mathbf{~ C R I}$	0.79

LUMEN OUTPUT MULTIPLIER - CCT	
CRI	FACTOR
4000 K	1.035
3500 K	1
3000 K	0.973
2700 K	0.938

LUMEN OUTPUT MULTIPLIER - TRIM FINISH							
FINISH	CLEAR (AR)	PEWTER (PR)	WHEAT (WTR)	GOLD (GR)	WHITE (WR/WRAMF)	BLACK (BR)	
Specular (LS)	1.00	0.88	0.83	0.95	N/A	N/A	
Semi-specular (LSS)	0.95	0.84	0.79	0.90	N/A	N/A	
Matte-diffuse (LD)	0.85	0.73	0.69	0.80	N/A	N/A	
Paint	N/A	N/A	N/A	N/A	0.87	0.73	

PHOTOMETRY NOTES

- Tested in accordance with IESNA LM-79-08.
- Tested to current IES and NEMA standards under stabilized laboratory conditions.
- CRI: 85 typical.

Choose Wall Controls.

nLIGHT oXers multiple styles of wall controls - each with varying features and user experience.

Push-Button WallPod Traditional tactile buttons and LED user feedback

Graphic WallPod

Full color touch screen provides a sophisticated look and feel

EXAMPLE

Group Fixture Control*
*Application diagram applies for fixtures with eldoLED drivers only.
nPS 80 EZ Dimming/Control Pack (qty 2 required) nPODM 2P DX Dual On/Off/Dim Push-Button WallPod nCM ADCX Daylight Sensor with Automatic Dimming Control nCM PDT 9 Dual Technology Occupancy Sensor
Description: This design provides a dual on/off/dim wall station that enables manual control of the fixtures in Row A and Row B separately. Additionally, a daylight harvesting sensor is provided so the lights in row B can be configured to dim automatically when daylight is available. An occupancy sensor turns off all lights when the space is vacant.

nLight® Control Accessories: Order as separate catalog number. Visit www.sensorswitch.com/nLight for complete listing of nLight controls.			
WallPod stations	Model number	Occupancy sensors	Model number
On/Off	nPODM [color]	Small motion 360°, ceiling (PIR / dual tech)	nCM 9 / nCM PDT 9
On/Off \& Raise/Lower	nPODM DX [color]	Large motion 360°, ceiling (PIR / dual tech)	nCM 10 / nCM PDT 10
Graphic Touchscreen	nPOD GFX [color]	Wide view (PIR / dual tech)	nWV 16 / nWV PDT 16
Photocell controls	Model number	Wall Switch w/ Raise/Lower (PIR / dual tech)	nWSX LV DX / nWSX PDT LV DX
Dimming	nCM ADCX	Cat-5 cables (plenum rated)	Model number
		10', CAT5 10FT	CAT5 10FT J1
		15', CAT5 15FT	CAT5 15FT J1

McMinnville High School Remodel

Transportation Impact Study

McMinnville, Oregon

DATE:

October 6, 2016

Prepared For:

Jim Fitzpatrick
Dull OIson Weekes - IBI Group Architects, Inc.

Prepared By:

William Farley, PE

Table of Contents

Executive Summary 3
Project Description 4
Trip Generation \& Distribution 12
Future Traffic Conditions. 20
Safety Analysis 27
Operational Analysis 28
Conclusions 30
Appendix 31

Executive Summary

1. The McMinnville High School is proposing a remodel of the school campus that will improve the existing school while providing a net increase of four new classrooms as well as a new technology center, an athletic field house, and expansion to the school's cafeteria. With the proposed remodel, the parking areas and circulation around the campus will be altered to relocate a number of student/faculty spaces as well as separate parent drop-off and bus loading areas.
2. Although no increase in the current enrollment of approximately 2,200 students is anticipated between now and when the remodel is completed, analysis was conducted assuming an increase in enrollment of 100 students to account for the capacity of the four additional classrooms. The trip generation calculations show that this potential increase in enrollment would generate an additional 43 trips during the morning peak period, 29 trips during the afternoon peak period, and 13 trips during the evening peak period.
3. Based on a detailed review of the crash history, no significant patterns or contributing design concerns were identified at the study intersections.
4. All study intersections are projected to operate within the performance standards established by the City of McMinnville through year 2019, regardless of the alterations to site circulation from the proposed remodel or the additional trips that would result from the potential increased enrollment of 100 students.

Project Description

Introduction

McMinnville High School is proposing a remodel of the school campus. The remodel will improve existing facilities by providing four additional classrooms as well as constructing a technology center, building an athletic field house, and expanding the school cafeteria. The parking areas and circulation around the campus will also be improved to separate parent drop-off and bus loading areas.

This report assesses the traffic impacts of the proposed remodel of the school campus on the nearby street system and provides recommendations regarding any mitigations necessary to maintain safe and efficient operation. Supporting information (including the site plan, traffic counts, and detailed traffic analysis calculations) is included in the attached appendix.

Location Description

The high school campus is located at 615 NE $15^{\text {th }}$ Street in McMinnville, Oregon. The school property is bounded by NE $15^{\text {th }}$ Street to the south, NE $17^{\text {th }}$ Street to the north, NE Evans Street to the west, and NE McDonald Lane to the east. The school is located in an area that is predominantly residential.

The school's access for the parent drop-off area, bus loading zones, and main student/faculty parking areas is provided as an aisle that connects NE $15^{\text {th }}$ Street and NE $17^{\text {th }}$ Street across from NE Hembree Street. An additional access is located to the east on NE $15^{\text {th }}$ Street across from NE Irvine Street and an additional egress is located to the west across from NE Galloway Street.

Based on scoping conversations with City of McMinnville staff, the following intersections have been identified for analysis of impacts related to the development:

- NE Evans Street at NE 1 1th $^{\text {th }}$ Street
- NE Evans Street at NE $17^{\text {th }}$ Street
- NE Evans Street at NE $15^{\text {th }}$ Street

Additionally, the following access intersections have been identified for analysis of impacts related to the revised circulation of the parking areas following the remodel of the campus:

- NE Hembree Street at NE $17^{\text {th }}$ Street
- NE Galloway Street at NE $15^{\text {th }}$ Street
- School Main Access at NE $15^{\text {th }}$ Street
- NE Irvine Street at NE $15^{\text {th }}$ Street

Vicinity Streets

NE Evans Street is under the jurisdiction of the City of McMinnville and is classified as a Minor Collector. The street is a two-lane facility with a school-zone speed limit of 20 mph from 7:00 AM to 5:00 PM on school days and a statutory residential speed limit of 25 mph at other times. Curbs and sidewalks are installed along both sides of the street. Bike lanes are provided between NE $8^{\text {th }}$ Street and NE $17^{\text {th }}$ Street where on-street parking is restricted.

NE $19^{\text {th }}$ Street is under the jurisdiction of the City of McMinnville and is classified as a Major Collector. The street is a two-lane facility with a statutory residential speed limit of 25 mph . Curbs are installed along both sides of the street and sidewalks are provided along the northern side. On-street parking is available along both sides of the roadway.

NE $17^{\text {th }}$ Street is under the jurisdiction of the City of McMinnville and is classified as a Local Street. It is a two-lane facility, without centerline striping, and has a statutory residential speed limit of 25 mph outside the hours of 7:00 AM and 5:00 PM on school days. Curbs are installed along both sides of the street and sidewalks are provided along the southern side. On-street parking is permitted along both sides; however, parking on the northern side of the street is limited to two hours without residential permit on school days between 7:00 AM and 4:00 PM.

NE $15^{\text {th }}$ Street is under the jurisdiction of the City of McMinnville and is classified as a Local Street. The street is a two-lane facility, without centerline striping, and has a statutory residential speed limit of 25 mph outside the hours of 7:00 AM and 5:00 PM on school days. Curbs and sidewalks are provided along both sides of the roadway. On-street parking areas are provided along both sides of the facility; however, parking on the southern side of the street is limited to two hours without residential permit on school days between 7:00 AM and 4:00 PM.

NE Hembree Street is under the jurisdiction of the City of McMinnville and is classified as a Local Street. The street is a two-lane facility, without centerline striping, and has a statutory residential speed limit of 25 mph . Curbs are provided along both sides of the roadway and sidewalks are installed intermittently. Parking is permitted along bides of the street.

NE Galloway Street is under the jurisdiction of the City of McMinnville and is classified as a Local Street. The street is a two-lane facility, without centerline striping, and has a statutory residential speed limit of 25 mph . Curbs and sidewalks are provided along both sides of the roadway. Parking is permitted along the eastern side of the street and is limited to two hours without permit during school hours near the campus.

NE Irvine Street is under the jurisdiction of the City of McMinnville and is classified as a Local Street. The street is a two-lane facility, without centerline striping, and has a statutory residential speed limit of 25 mph . Curbs and sidewalks are provided along both sides of the roadway. Parking is permitted along both sides of the street and is limited to two hours without permit during school hours near the campus.

Study Intersections

The intersection of NE Evans Street at NE $19^{\text {th }}$ Street is a four-legged intersection operating under all-way stop control. Each approach at the intersection has a single, shared lane for all turning movements. Crosswalks are marked along the northern, eastern, and western legs.

The intersection of NE Evans Street at NE $17^{\text {th }}$ Street is a four-legged intersection operating under two-way stop control for the eastbound and westbound approaches on NE $17^{\text {th }}$ Street. Each approach at the intersection has a single, shared vehicle lane for all turning movements. The northbound approach has a bike lane located to the right of the vehicle lane. Crosswalks are marked across each leg of the intersection.

The intersection of NE Evans Street at NE $15^{\text {th }}$ Street is a four-legged intersection operating under all-way stop control. Each approach at the intersection has a single, shared vehicle lane for all turning movements. The northbound and southbound approaches each have a bike lane located to the right of the vehicle lane. Crosswalks are marked across each leg of the intersection.

The intersection of NE Hembree Street at NE $17^{\text {th }}$ Street is a three-legged intersection operating under all-way stop control. The southern leg of the intersection serves as access to the main aisle serving the school's parking areas. Each approach at the intersection has a single, shared vehicle lane for all turning movements. After the completion of the remodel of the high school, an eastern leg will be constructed for traffic entering and exiting the school property.

The intersection of NE Galloway Street at NE $15^{\text {th }}$ Street is a four-legged intersection operating under two-way stop control for the northbound and southbound approaches. The southbound approach at the intersection serves as an egress for the drop-off area along the front of the campus and has a dedicated left-turn lane and a through/right-turn lane. The northbound approach on NE Galloway Street and the eastbound and westbound approaches on NE $15^{\text {th }}$ Street each have a single, shared lane for all turning movements.

The intersection of the school's main access at NE $15^{\text {th }}$ Street is a three-legged intersection operating under stop control for the southbound approach from the school. Each approach at the intersection has a single, shared lane for all turning movements.

The intersection of NE Irvine Street at NE $15^{\text {th }}$ Street is a three-legged intersection operating under stop control for the southbound approach from the school's parking lot. Each approach at the intersection has a single, shared lane for all turning movements.

Figure 1 on page eight provides a vicinity map showing the existing lane configurations and traffic control devices at the study intersections.

Traffic Counts
Traffic volumes were collected at the intersection of the school's main access at NE $15^{\text {th }}$ Street on Thursday, September, 22 ${ }^{\text {nd }}, 2016$, from 7:00 AM to 9:00 AM and from 2:00 PM to 6:00 PM. Traffic volumes were collected at the remaining study intersections on Tuesday, September $20^{\text {th }}, 2016$, for the same periods. Turning movement volumes corresponding to a system-wide peak period from 7:30 AM to 8:30 AM for the morning peak hour, from 2:55 PM to 3:55 PM for the afternoon peak hour, and from 5:00 PM to 6:00 PM for the evening peak hour were used for analysis.

Figure 2 on page 9, Figure 3 on page 10, and Figure 4 on page 11 shows the traffic volumes occurring at each of the study intersections for the morning, afternoon, and evening peak hours, respectively.

Trip Generation \& Distribution

Trip Generation

The remodel of the McMinnville High School campus will provide a net increase of four classrooms, a new technology center, an athletic field house, and an expansion to the cafeteria while improving traffic circulation by separating bus loading zones and parent drop-off areas. Enrollment for the high school is currently approximately 2,200 students and could potentially increase because of the addition of four new classrooms. Thus, it was assumed the campus could accommodate 100 new students by year 2019, when the remodel and additional facilities are projected to be completed and operational.

To estimate the number of trips that would be generated by a potential increase in enrollment by 100 students, trip rate data from the Trip Generation Manual ${ }^{1}$ was used. Data corresponding to land-use code 530, High School, was referenced based on the number of students.

The trip generation calculations show that with 100 additional students, the high school would generate an additional 43 trips during the morning peak hour with 29 entering trips and 14 exiting trips. During the afternoon peak hour associated with school release, the high school would generate an additional 29 trips with 10 trips entering and 19 trips exiting the site. During the evening peak hour, the school would be projected to generate a total of 13 additional trips with 6 trips entering the site and 7 trips exiting the site.

Detailed trip generation calculations for the increased enrollment of 100 students at McMinnville High School are included in the appendix to this report.

Trip Distribution \& Assignment

The directional distribution of site trips to and from the high school campus was estimated based on existing travel patterns at the study intersections while taking in account locations of likely trip destinations and locations of major transportation facilities in the site vicinity. Based on the data, the following trip distribution was estimated and used for analysis:

- 25 percent to and from the south along NE Evans Street;
- 20 percent to and from the north along NE Evans Street;
- 20 percent to and from the north along NE Hembree Street;
- 20 percent to and from the south along NE Irvine Street;
- 10 percent to and from the south along NE Galloway Street; and,
- 5 percent to and from the west along NE $19^{\text {th }}$ Street.

Since the remodel of the high school will alter traffic circulation through the site with the separation of parent drop-off areas and bus loading zones while relocating approximately 144 student/faculty park-

[^1]ing spaces to the north side of the property, the following assumptions were made regarding how buses and students/faculty arrive and depart the school:

- Approximately 60 percent of vehicles entering and remaining on the site during the morning peak hour were redirected to the new parking areas on the north end of the campus and the new access from NE 17 ${ }^{\text {th }}$ Street;
- Approximately 30 percent of vehicles exiting the site that had not arrived during the afternoon peak hour were redirected to the new parking areas and the access from NE $17^{\text {th }}$ Street;
- Approximately 30 percent of the vehicles entering and exiting the site during the evening peak hour were redirected to the new parking areas and the access from NE $17^{\text {th }}$ Street;
- Vehicles exiting via the NE Irvine Street access were redirected to use the school's main access to NE $15^{\text {th }}$ Street; and,
- All bus traffic was redirected to enter via the NE Irvine Street access and exit via the new access to NE $17^{\text {th }}$ Street at NE Humbree Street.

Figure 5 on page 14, Figure 6 on page 15, and Figure 7 on page 16 provide the trip distribution and assignment during the morning, afternoon, and evening peak periods for the increased enrollment of 100 students. Figure 8 on page 17, Figure 9 on page 18, and Figure 10 on page 19 provide the assumed adjustments to traffic circulation resulting from the remodel of the high school campus.

Future Traffic Conditions

Background Traffic

To provide analysis of the impact of the proposed remodel of the high school and alteration of site circulation on the nearby transportation facilities at the time of its projected completion date, an estimate of future traffic volumes is required. This adjustment to traffic volumes accounts for the general growth in the area not associated with the school that may occur during the remodel and construction of four additional classrooms, the technology center, the athletic field house, and expansion to the cafeteria. In order to calculate theses future traffic volumes, a compounded growth rate of two percent per year for an assumed build-out condition of three years was applied to the measured existing through traffic volumes on arterial streets to approximate year 2019 background conditions, when the high school's remodel is projected to be completed and operating.

The projected morning, afternoon, and evening peak hour volumes for year 2019 traffic conditions are shown in Figure 11 on page 21, Figure 12 on page 22, and Figure 13 on page 23.

Background Plus Site Trips

Peak hour trips calculated to be generated by a potential increase in enrollment of 100 students, as described earlier within the Trip Generation \& Distribution section, were added to the projected year 2019 background traffic volumes. Adjustments to volumes associated with the alteration of the site circulation and relocation of student/faculty parking to the north of the site were then applied to obtain the expected 2019 background plus site trips.

The projected year 2019 traffic volumes after the completion of the proposed remodel are shown in Figure 14 on page 24 for the morning peak hour, Figure 15 on page 25 for the afternoon peak hour, and Figure 16 on page 26 for the evening peak hour.

Safety Analysis

Crash Data Review

A review of crashes occurring at the study intersections was conducted using the most recent five years of available data (January 2010 to December 2014) obtained from the Oregon Department of Transportation's Crash Analysis and Reporting Unit. The crash data was evaluated based on the number of crashes, the types of collisions, the severity of the collisions, and the crash rate for the intersection. Crash rates allow comparison of safety risks at different intersections by accounting for both the number of crashes occurring and the number of vehicles that travel through the intersection. Crash rates were calculated using the common assumption that traffic counted during the evening peak period represents 10 percent of the annual average daily traffic at the intersection. Crash rates in excess of one to two crashes per million entering vehicles (CMEV) may be indicative of design deficiencies and therefore require a need for further investigation and possible mitigation.

The intersection of NE Evans Street at NE $19^{\text {th }}$ Street had five reported crashes during the analysis period. Three of the crashes were angle collisions, one crash involved a turning vehicle, and one was a rear-end collision. Of the reported crashes, three resulted in property damage only (PDO), one resulted in possible injuries or complaints of pain (Injury-C), and one resulted in a nonincapacitating injury (Injury-B). The crash rate for the intersection was calculated to be 0.36 CMEV.

The intersection of NE Evans Street at NE 17 ${ }^{\text {th }}$ Street had five reported crashes during the five-year analysis period. These crashes included four angle-type collisions and one crash involving a turning vehicle. Three of the crashes resulted in only property damage, one crash resulted in possible injuries or complaints of pain, and one crash resulted in a non-incapacitating injury. The crash rate was calculated to be 0.46 CMEV.

The intersection of NE Evans Street at NE $15^{\text {th }}$ Street had one reported crash. The crash was a noncollision in which a motorcycle driving too fast for conditions overturned. The crash resulted in the driver suffering an incapacitating injury (Injury-A). The crash rate for the intersection was calculated to be 0.08 CMEV .

The intersection of NE Galloway Street at NE $15^{\text {th }}$ Street had one reported crash during the analysis period that involved a vehicle backing into a parked vehicle. Only property damage was reported. The crash rate for the intersection was calculated to be 0.26 CMEV.

No crashes were found to have been reported during the five-year analysis period at any of the remaining study intersections.

Based on a detailed review of the crash history, no significant patterns or contributing design concerns were identified at the study intersections. No safety-specific mitigations are recommended.

Operational Analysis

Capacity Analysis

To determine traffic impacts resulting from the proposed remodel of the McMinnville High School, an operational analysis was conducted for each of the study intersections. The analysis was conducted according to the unsignalized intersection methodologies provided in the Highway Capacity Manual 2010^{2}. The analysis periods included morning, afternoon, and evening peak hours for existing conditions, year 2019 background conditions, year 2019 background plus site trips projected to result from a potential increased enrollment of 100 students.

Per Chapter 2 of the City of McMinnville's Transportation System Plan, intersections under the jurisdiction of the City must operate with a volume-to-capacity (v/c) ratio of 0.90 or less. The v/c ratio compares the actual traffic to the potential capacity to determine the portion that is utilized by traffic.

The intersection of NE Evans Street at NE $19^{\text {th }}$ Street is currently operating with a v/c ratio of 0.74 or better during all studied peak periods. With the proposed remodel of the high school, the intersection is projected to operate with a v/c ratio of 0.84 during the morning peak hour, 0.54 during the afternoon peak hour, and 0.50 during the evening peak hour.

After the western leg is added to the intersection of NE Hembree Street at NE $17^{\text {th }}$ Street, the intersection is projected to operate with a v / c ratio of 0.45 or better during all peak periods.

With reduced traffic volumes projected for NE $15^{\text {th }}$ Street due to the alterations to site circulation, each of the school's access intersections are projected to continue to operate acceptably following the proposed remodel.

The results of the capacity analysis, along with the levels of service, calculated delay, and volume-tocapacity ratios are shown in the table on the following page. Detailed calculations, as well as tables showing the relationships between delay and level of service, are included in the appendix to this report.

[^2]| CAPACITY ANALYSIS SUMMARY | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | AM Peak Hour | | | Afternoon Peak Hour | | | PM Peak Hour | | |
| | LOS | Delay (s) | V/C | LOS | Delay (s) | V/C | LOS | Delay (s) | V/C |
| NE Evans St at NE 19th St | | | | | | | | | |
| 2016 Existing | C | 18 | 0.74 | B | 13 | 0.48 | B | 12 | 0.46 |
| 2019 Background | C | 22 | 0.82 | B | 13 | 0.53 | B | 13 | 0.50 |
| 2019 Background + Site | C | 25 | 0.84 | B | 14 | 0.54 | B | 13 | 0.50 |
| NE Evans St at NE 17th St | | | | | | | | | |
| 2016 Existing | C | 22 | 0.23 | C | 16 | 0.14 | B | 12 | 0.11 |
| 2019 Background | C | 23 | 0.24 | C | 16 | 0.14 | B | 13 | 0.11 |
| 2019 Background + Site | D | 27 | 0.28 | C | 16 | 0.24 | B | 13 | 0.11 |
| NE Evans St at NE 15th St | | | | | | | | | |
| 2016 Existing | B | 12 | 0.48 | B | 11 | 0.41 | A | 10 | 0.34 |
| 2019 Background | B | 12 | 0.49 | B | 11 | 0.43 | A | 10 | 0.36 |
| 2019 Background + Site | B | 13 | 0.51 | B | 11 | 0.43 | A | 10 | 0.36 |
| NE Hembree St at NE 17th St | | | | | | | | | |
| 2016 Existing | A | 10 | 0.37 | A | 8 | 0.11 | A | 7 | 0.07 |
| 2019 Background | A | 10 | 0.37 | A | 8 | 0.11 | A | 7 | 0.07 |
| 2019 Background + Site | B | 11 | 0.45 | A | 8 | 0.17 | A | 7 | 0.07 |
| NE Galloway St at NE 15th St | | | | | | | | | |
| 2016 Existing | C | 16 | 0.33 | C | 18 | 0.20 | A | 10 | 0.09 |
| 2019 Background | C | 16 | 0.33 | C | 18 | 0.20 | A | 10 | 0.09 |
| 2019 Background + Site | C | 16 | 0.33 | C | 17 | 0.13 | A | 10 | 0.09 |
| Main School Access at NE 15th St | | | | | | | | | |
| 2016 Existing | B | 14 | 0.16 | B | 11 | 0.07 | A | 9 | 0.08 |
| 2019 Background | B | 14 | 0.16 | B | 11 | 0.07 | A | 9 | 0.08 |
| 2019 Background + Site | B | 13 | 0.18 | B | 12 | 0.23 | A | 9 | 0.09 |
| NE Irvine St at NE 15th St | | | | | | | | | |
| 2016 Existing | B | 10 | 0.04 | B | 12 | 0.33 | A | 9 | 0.04 |
| 2019 Background | B | 10 | 0.04 | B | 12 | 0.33 | A | 9 | 0.04 |
| 2019 Background + Site | A | 8 | 0.07 | A | 8 | 0.08 | A | 7 | 0.01 |

Based on the detailed analysis, each of the study intersections are projected to operate within the City of McMinnville's operational standards through year 2019, regardless of the proposed remodel of the school or alterations to site circulation. Accordingly, no operational mitigations are recommended.

Conclusions

All study intersections are projected to operate within the performance standards established by the City of McMinnville through year 2019, with or without the alterations to site circulation from the proposed remodel of the McMinnville High School or the additional trips that would result from the potential increased enrollment of 100 students.

Based on a detailed review of the crash history, no significant patterns or contributing design concerns were identified at the study intersections.

Based on the detailed analysis, the transportation system in the vicinity of the McMinnville High School can safely and efficiently support the proposed remodel of the school campus as well as the alterations to site circulation. No operational or safety mitigations are recommended in conjunction with the proposed development.

Appendix

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West
PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left		Thru	Right	U-Turn	Left		Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn
7:00AM		0	7	0	0		2	4	4	0	0	2	1	0	0	2	1	0
7:05AM		0	4	1	0		2	8	80	0	0	4	2	0	0	4	2	0
7:10AM		0	9	1	0		1	8	80	0	0	1	0	0	0	1	2	0
7:15AM		0	3	1	0		1	7	70	0	0	5	5	0	0	2	0	0
7:20AM		2	2	0	0		4	28	0	0	0	8	- 1	0	2	1	0	0
7:25AM		2	7	2	0		2	19	0	0	0	2	21	0	0	1	3	0
7:30AM		1	7	1	0		1	17	0	0	0	3	1	0	2	3	3	0
7:35AM		0	6	1	0		2	19		0	0	3	1	0	2	5	2	0
7:40AM		1	7	1	0		3	12	0	0	0	2	5	0	0	5	3	0
7:45AM		2	5	1	0		8	18	0	0	0	7	3	0	1	4	3	0
7:50AM		1	12	2	0		5	16	0	0	0	6	4	0	0	6	6	0
7:55AM		3	13	0	0		2	31	0	0	0	11	4	0	4	6	4	0
8:00AM		4	17	1	0		4	22	1	0	0	16	5	0	1	7	4	0
8:05AM		6	12	3	0		8	32		0	1	11	7	0	1	7	5	0
8:10AM		3	18	3	0		4	35	3	0	0	9	5	0	4	4	9	0
8:15AM		4	12	0	0		7	26		0	0	6	5	0	4	9	8	0
8:20AM		5	10	0	0		2	11		0	0	3	3	0	3	10	6	0
8:25AM		0	8	3	0		1	7	70	0	0	4	0	0	1	6	4	0
8:30AM		0	6	0	0		1	4	4	0	0	2	1	0	1	3	1	0
8:35AM		0	4	0	0		0	8	80	0	0	5	1	0	1	3	1	0
8:40AM		1	3	2	0		3	10	0	0	0	6	2	0	2	3	3	0
8:45AM		1	6	1	0		3	7	1	0	0	3	1	0	1	5	1	0
8:50AM		1	4	2	0		3	6	60	0	0	3	2	0	2	4	0	0
8:55AM		0	7	0	0		1	7	72	0	0	4	0	0	1	1	3	0

	Other Vehicles																
	Northbound				Southbound					Eastbound				Westbound			
	Northbound Approach				Southbound Approach					Eastbound Approach				Westbound Approach			
Time	Left	Thru	Right	U-Turn	Left		Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn
7:00AM	0	0	0	0		0	0	0	0	0	0	0	0	1	0	0	0
7:05AM	0	0	0	0		1	0	0	0	0	0	0	0	0	0	1	0
7:10AM	0	1	0	0		0	0	0	0	0	0	0	0	0	1	0	0
7:15AM	0	0	0	0		0	1	0	0	0	1		0	1	0	1	0
7:20AM	0	0	0	0		0	0	0	0	0	0	0	0	1	0	0	0
7:25AM	0	0	1	0		0	0	- 1	0	0	1	0	0	0	1	0	0
7:30AM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
7:35AM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
7:40AM	0	1	0	0		0	0	0	0	0	0	0	0	0	0	1	0
7:45AM	0	0	1	0		0	0	0	0	0	0		0	0	0	0	0
7:50AM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
7:55AM	0	1	0	0		0	0	0	0	0	1	0	0	3	0	0	0
8:00AM	0	0	0	0		0	1	0	0	0	4	1	0	0	0	0	0
8:05AM	0	0	2	0		0	1	0	0	0	1	0	0	0	0	1	0
8:10AM	0	1	0	0		0	0	0	0	0	5	50	0	0	0	0	0
8:15AM	0	0	0	0		3	0	0	0	0	2	0	0	0	0	0	0
8:20AM	0	1	1	0		0	0	0	0	0	0	0	0	0	0	0	0
8:25AM	0	0	3	0		0	0	0	0	0	0	0	0	0	2	0	0
8:30AM	0	0	0	0		0	2	0	0	0	0	0	0	0	1	0	0
8:35AM	0	0	0	0		0	0	0	0	0	3	0	0	0	0	1	0
8:40AM	0	0	0	0		0	0	0	0	0	4	0	0	0	1	0	0
8:45AM	0	0	0	0		0	0	0	0	0	2	0	0	0	0	0	0
8:50AM	0	0	0	0		0	0	0	0	0	1	0	0	0	0	0	0
8:55AM	0	0	0	0		0	0	0	0	0	0	0	0	0	0	2	0

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
7:00AM	0	1	1	0
7:05AM	0	0	0	2
7:10AM	0	0	0	1
7:15AM	1	0	0	0
7:20AM	0	0	0	0
7:25AM	1	0	0	0
7:30AM	0	0	0	0
7:35AM	0	0	0	0
7:40AM	0	1	2	0
7:45AM	0	1	0	2
7:50AM	0	2	0	8
7:55AM	0	2	0	6
8:00AM	0	0	1	2
8:05AM	0	0	0	2
8:10AM	0	0	2	1
8:15AM	0	0	2	0
8:20AM	0	0	0	0
8:25AM	0	0	2	1
8:30AM	0	2	2	2
8:35AM	0	0	0	0
8:40AM	0	0	0	0
8:45AM	0	0	0	0
8:50AM	0	1	0	1
8:55AM	0	0	0	0

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
$\begin{array}{lrrr}\text { North } & \text { South } & \text { East } & \text { West } \\ 9 & 10 & 3 & 57\end{array}$
PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight

Time	Left	Thru	Right	U-Turn	ot												
2:00PM	2	14	2	0	1	10	1	0	1	1	2	0	1	4	3	0	42
2:05PM	2	12	2	0	4	7	1	0	2	4	3	0	1	4	0	0	42
2:10PM	1	25	4	0	1	10	1	0	0	1	4	0	2	6	3	0	58
2:15PM	3	27	4	0	3	8	1	0	1	3	1	0	1	7	3	0	62
2:20PM	3	15	3	0	2	9	2	0	3	3	2	0	2	9	2	0	55
2:25PM	3	25	2	0	3	5	1	0	0	9	2	0	2	6	2	0	60
2:30PM	1	26	3	0	6	6	1	0	1	3	2	0	1	4	2	0	56
2:35PM	3	18	2	0	4	6	2	0	1	7	2	0	4	9	2	0	60
2:40PM	0	12	1	0	5	8	0	0	2	4	2	0	2	7	3	0	46
2:45PM	0	16	2	0	2	12	1	0	1	4	4	0	5	8	6	0	61
2:50PM	1	14	2	0	3	16	0	0	0	7	0	0	3	4	1	0	51
2:55PM	0	15	3	0	2	15	0	0	3	0	3	0	0	5	0	0	46
3:00PM	1	11	4	0	2	11	1	0	0	14	2	0	2	5	6	0	59
3:05PM	2	14	1	0	3	17	0	0	1	6	4	0	3	9	5	0	65
3:10PM	1	10	2	0	5	15	3	0	2	2	3	0	4	7	3	0	57
3:15PM	1	12	1	0	5	12	0	0	3	11	6	0	6	5	5	0	67
3:20PM	0	16	2	0	5	13	1	0	0	5	5	0	4	5	2	0	58
3:25PM	6	20	0	0	3	13	1	0	0	6	3	0	0	15	7	0	74
3:30PM	5	18	4	0	4	13	3	0	2	6	1	0	3	12	7	0	78
3:35PM	8	22	4	0	1	11	2	0	0	7	3	0	0	16	11	0	85
3:40PM	5	20	2	0	0	11	2	0	2	3	0	0	1	9	1	0	56
3:45PM	2	14	2	0	5	10	2	0	0	4	3	0	3	6	3	0	54
3:50PM	2	16	2	0	2	8	2	0	1	8	3	0	1	4	3	0	52
3:55PM	2	17	0	0	3	8	0	0	1	3	0	0	2	7	1	0	44

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
2:00PM	2	14	2	0	- 1	10	1	0	1	1	2	0	1	2	3	0
2:05PM	2	12	2	0	03	7	1	0	2	4	3	0	1	2	0	0
2:10PM	1	25	4	0	1	9	1	0	0	1	4	0	2	6	3	0
2:15PM	3	27	4	0	03	8	1	0	1	3	1	0	1	6	3	0
2:20PM	3	12	2	0	02	9	2	0	3	3	2	0	2	4	2	0
2:25PM	3	25	2	0	03	5	1	0	0	9	2	0	0	5	2	0
2:30PM	1	26	3	0	06	6	1	0	1	3	2	0	0	4	2	0
2:35PM	2	18	2	0	04	6	2	0	1	7	- 2	0	4	9	1	0
2:40PM	0	12	1	0	0	7	0	0	2	4	1	0	2	26	3	0
2:45PM	0	16	2	0	0	12	1	0	1	4	4	0	5	8	6	0
2:50PM	1	13	2	0	03	16	0	0	0	7	0	0	3	4	1	0
2:55PM	0	14	1	0	0	15	0	0	3	0	3	0	0	5	0	0
3:00PM	1	11	4	0	2	10	1	0	0	13	2	0	2	5	5	0
3:05PM	2	13	1	0	03	13	0	0	1	6	4	0	3	7	5	0
3:10PM	1	10	2	0	5	15	3	0	2	2	3	0	2	5	3	0
3:15PM	1	11	1	0	- 4	12	0	0	3	10	5	0	6	5	5	0
3:20PM	0	15	2	0	5	13	1	0	0	4	5	0	4	4	2	0
3:25PM	6	19	0	0	03	12	1	0	0	6	3	0	0	15	7	0
3:30PM	5	18	4	0	04	13	3	0	2	5	1	0	3	12	7	0
3:35PM	7	20	3	0	01	11	2	0	0	7	3	0	0	13	10	0
3:40PM	4	19	2	0	0	11	1	0	2	3	0	0	1	9	1	0
3:45PM	2	14	2	0	05	10	2	0	0	3	3	0	3	6	3	0
3:50PM	2	16	2	0	2	8	2	0	1	8	3	0	1	4	3	0
3:55PM	2	17	0	0	03	8	0	0	1	2	0	0	2	7	1	0

KEY DATA NETWOFIK				
Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
2:00PM	0	0	0	0
2:05PM	0	0	0	0
2:10PM	0	2	2	2
2:15PM	0	0	0	2
2:20PM	0	1	0	0
2:25PM	0	0	0	0
2:30PM	0	0	0	1
2:35PM	0	1	4	1
2:40PM	0	0	0	0
2:45PM	0	0	1	1
2:50PM	0	0	0	2
2:55PM	0	1	0	0
3:00PM	0	0	0	0
3:05PM	1	2	0	1
3:10PM	1	0	0	3
3:15PM	0	0	0	1
3:20PM	0	0	0	0
3:25PM	2	0	1	15
3:30PM	3	4	1	21
3:35PM	1	3	0	7
3:40PM	1	0	0	6
3:45PM	2	0	1	4
3:50PM	0	0	0	1
3:55PM	0	0	1	1

KEY DATA NETWOFIK

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West
PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				Total
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
4:00PM	2	17	0	0	2	9	2	0	0	3	4	0	2	8	5	0	54
4:05PM	4	13	1	0	4	17	1	0	0	2	1	0	1	2	4	0	50
4:10PM	2	14	1	0	7	16	3	0	1	1	2	0	1	8	4	0	60
4:15PM	0	17	1	0	2	18	0	0	1	7	2	0	1	5	3	0	57
4:20PM	0	13	0	0	3	18	0	0	0	4	0	0	1	4	2	0	45
4:25PM	0	13	0	0	4	19	0	0	0	4	0	0	0	6	4	0	50
4:30PM	1	17	2	0	1	5	0	0	2	5	3	0	3	7	1	0	47
4:35PM	3	19	0	0	3	14	3	0	0	5	6	0	1	4	5	0	63
4:40PM	1	18	2	0	5	15	3	0	2	2	1	0	1	4	2	0	56
4:45PM	1	18	2	0	7	24	2	0	2	2	5	0	1	5	5	0	74
4:50PM	1	13	3	0	3	16	3	0	2	4	4	0	3	11	8	0	71
4:55PM	1	15	2	0	6	17	2	0	0	6	1	0	3	11	2	0	66
5:00PM	3	16	3	0	5	14	1	0	2	6	2	0	2	8	3	0	65
5:05PM	5	24	4	0	4	8	3	0	3	5	1	0	3	9	3	0	72
5:10PM	1	27	1	0	4	9	1	0	1	12	5	0	4	13	7	0	85
5:15PM	1	16	3	0	5	15	1	0	2	9	1	0	2	11	1	0	67
5:20PM	2	7	2	0	3	19	0	0	1	8	2	0	3	- 7	1	0	55
5:25PM	1	23	3	0	0	18	1	0	0	4	2	0	2	7	2	0	63
5:30PM	1	30	1	0	2	16	1	0	1	4	3	0	3	5	5	0	72
5:35PM	2	12	1	0	2	19	4	0	3	5	3	0	2	8	5	0	66
5:40PM	3	14	2	0	1	12	0	0	1	6	3	0	2	4	1	0	49
5:45PM	1	22	2	0	0	16	2	0	0	7	1	0	0	3	0	0	54
5:50PM	2	17	1	0	2	19	0	0	0	1	4	0	2	3	2	0	53
5:55PM	0	15	2	0	4	25	1	0	0	5	2	0	1	3	2	0	60

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
4:00PM	2	17	0	0	2	9	2	0	0	2	4	0	2	8	5	0
4:05PM	4	13	1	0	0	17	1	0	0	2	0	0	1	2	4	0
4:10PM	2	14	1	0	5	16	3	0	1	1	2	0	1	8	4	0
4:15PM	0	16	1	0	2	18	0	0	1	7	1	0	1	5	3	0
4:20PM	0	13	0	0	2	18	0	0	0	4	0	0	1	4	2	0
4:25PM	0	13	0	0	4	19	0	0	0	4	0	0	0	6	4	0
4:30PM	1	17	2	0	0	5	0	0	2	3	3	0	3	7	1	0
4:35PM	3	19	0	0	2	12	3	0	0	5	6	0	- 1	4	5	0
4:40PM	1	18	2	0	5	15	3	0	2	1	1	0	1	4	2	0
4:45PM	1	18	2	0	7	24	2	0	2	2	5	0	1	5	5	0
4:50PM	1	13	3	0	3	16	3	0	2	4	4	0	3	11	8	0
4:55PM	1	15	2	0	6	17	2	0	0	6	- 1	0	- 3	11	2	0
5:00PM	3	15	3	0	5	14	1	0	2	5	2	0	2	8	3	0
5:05PM	5	24	4	0	4	8	3	0	3	5	- 1	0	3	8	3	0
5:10PM	1	26	1	0	4	8	1	0	1	12	5	0	4	13	7	0
5:15PM	1	16	3	0	3	14	1	0	2	9	1	0	2	11	1	0
5:20PM	2	6	1	0	3	18	0	0	1	8	2	0	3	7	1	0
5:25PM	1	23	3	0	0	18	1	0	0	2	2	0	2	6	2	0
5:30PM	1	30	1	0	2	16	1	0	1	4	3	0	2	5	4	0
5:35PM	2	12	1	0	2	19	4	0	3	4	3	0	2	7	5	0
5:40PM	3	14	2	0	1	12	0	0	1	6	3	0	2	4	1	0
5:45PM	1	22	2	0	0	16	2	0	0	6	1	0	0	3	0	0
5:50PM	2	17	1	0	1	19	0	0	0	0	4	0	2	3	2	0
5:55PM	0	15	2	0	4	25	1	0	0	5	2	0	1	3	2	0

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
4:00PM	0	0	0	1
4:05PM	1	0	1	0
4:10PM	0	1	0	1
4:15PM	0	0	1	0
4:20PM	0	2	0	2
4:25PM	0	0	0	0
4:30PM	0	9	0	5
4:35PM	1	0	2	2
4:40PM	0	0	7	9
4:45PM	0	1	7	3
4:50PM	7	5	7	5
4:55PM	0	0	2	4
5:00PM	0	1	5	2
5:05PM	0	0	0	0
5:10PM	0	0	1	0
5:15PM	0	0	0	0
5:20PM	0	0	0	0
5:25PM	0	0	0	0
5:30PM	0	0	0	0
5:35PM	0	0	0	1
5:40PM	1	0	0	0
5:45PM	1	1	0	1
5:50PM	0	0	0	0
5:55PM	0	0	0	0

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West
PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn	Total												
7:00AM	1	7	1	0	0	6	0	0	1	0	0	0	1	0	0	0	17
7:05AM	0	4	0	0	1	8	0	0	1	1	0	0	0	0	1	0	16
7:10AM	0	6	2	0	1	8	0	0	2	0	0	0	0	0	1	0	20
7:15AM	1	5	2	0	1	7	1	0	0	3	2	0	1	0	0	0	23
7:20AM	0	3	1	0	10	17	2	0	1	5	1	0	1	0	1	0	42
7:25AM	1	7	0	0	10	11	1	0	1	1	1	0	0	0	1	0	34
7:30AM	1	9	1	0	7	13	1	0	0	1	1	0	0	0	1	0	35
7:35AM	2	7	0	0	3	16	1	0	0	2	0	0	0	0	0	0	31
7:40AM	1	11	0	0	5	12	1	0	0	2	0	0	0	0	0	0	32
7:45AM	0	6	1	0	3	19	0	0	1	0	2	0	1	0	0	0	33
7:50AM	0	14	3	0	6	16	1	0	1	1	1	0	0	0	1	0	44
7:55AM	1	16	1	0	16	21	1	0	2	3	1	0	1	0	1	0	64
8:00AM	2	20	1	0	10	22	1	0	0	4	1	0	2	0	5	0	68
8:05AM	0	16	5	0	20	17	3	0	0	1	3	0	2	0	4	0	71
8:10AM	1	19	2	0	18	23	0	0	1	1	4	0	2	0	3	0	74
8:15AM	0	11	0	0	20	14	1	0	0	4	0	0	6	0	4	0	60
8:20AM	0	16	1	0	7	14	1	0	1	1	1	0	2	0	1	0	45
8:25AM	0	13	0	0	0	9	0	0	0	2	0	0	0	0	0	0	24
8:30AM	1	7	0	0	0	8	0	0	0	0	1	0	1	0	0	0	18
8:35AM	2	3	0	0	0	9	0	0	0	0	1	0	1	0	0	0	16
8:40AM	0	7	0	0	1	12	0	0	1	0	0	0	0	0	0	0	21
8:45AM	0	6	0	0	0	11	0	0	0	1	1	0	2	0	0	0	21
8:50AM	0	7	1	0	1	8	0	0	1	1	0	0	0	0	0	0	19
8:55AM	0	6	0	0	0	9	0	0	0	0	0	0	3	0	1	0	19

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
7:00AM	1	7	1	0	0	5	0	0	1	0	0	0	1	0	0	0
7:05AM	0	4	0	0	1	8	0	0	1	1	0	0	0	0	1	0
7:10AM	0	6	2	0	1	8	0	0	2	0	0	0	0	0	0	0
7:15AM	1	5	2	0	1	6	1	0	0	3	2	0	1	0	0	0
7:20AM	0	3	1	0	10	16	2	0	1	5	1	0	0	0	1	0
7:25AM	0	6	0	0	10	11	1	0	1	1	1	0	0	0	1	0
7:30AM	0	9	1	0	7	13	1	0	0	1	1	0	0	0	1	0
7:35AM	2	7	0	0	3	16	1	0	0	2	0	0	0	0	0	0
7:40AM	1	10	0	0	5	12	1	0	0	2	0	0	0	0	0	0
7:45AM	0	5	1	0	2	19	0	0	1	0	2	0	1	0	0	0
7:50AM	0	14	3	0	6	16	1	0	1	1	1	0	0	0	1	0
7:55AM	0	15	1	0	15	20	1	0	2	3	1	0	1	0	1	0
8:00AM	2	20	1	0	9	20	1	0	0	4	1	0	2	0	5	0
8:05AM	0	15	5	0	20	16	3	0	0	1	3	0	2	0	3	0
8:10AM	1	18	2	0	18	23	0	0	1	1	4	0	2	0	3	0
8:15AM	0	11	0	0	20	14	1	0	0	4	0	0	6	0	4	0
8:20AM	0	13	1	0	7	14	1	0	1	1	1	0	2	0	1	0
8:25AM	0	11	0	0	0	9	0	0	0	2	0	0	0	0	0	0
8:30AM	1	7	0	0	0	7	0	0	0	0	1	0	1	0	0	0
8:35AM	2	3	0	0	0	9	0	0	0	0	1	0	0	0	0	0
8:40AM	0	7	0	0	1	12	0	0	1	0	0	0	0	0	0	0
8:45AM	0	6	0	0	0	11	0	0	0	1	1	0	2	0	0	0
8:50AM	0	7	1	0	1	8	0	0	1	1	0	0	0	0	0	0
8:55AM	0	6	0	0	0	9	0	0	0	0	0	0	3	0	1	0

	Other Vehicles			
Northbound	Southbound	Eastbound	Westbound	
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach	

Time					,				促							
	Left	Thru	Right	U-Turn												
7:00AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7:05AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:10AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:15AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7:20AM	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0
7:25AM	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:35AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:40AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45AM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
7:50AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:55AM	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0
8:00AM	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0
8:05AM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0
8:10AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:20AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:25AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
8:35AM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
8:40AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:50AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:55AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
7:00AM	1	0	1	0
7:05AM	1	0	0	2
7:10AM	0	2	0	0
7:15AM	1	0	0	1
7:20AM	2	0	0	0
7:25AM	1	1	0	1
7:30AM	5	0	0	1
7:35AM	2	0	1	0
7:40AM	1	0	1	0
7:45AM	2	0	2	0
7:50AM	0	2	1	9
7:55AM	1	0	0	4
8:00AM	2	1	0	8
8:05AM	3	1	2	0
8:10AM	2	4	0	3
8:15AM	0	0	2	0
8:20AM	2	0	0	0
8:25AM	0	0	3	2
8:30AM	1	0	0	2
8:35AM	0	0	0	2
8:40AM	0	0	1	0
8:45AM	0	0	0	0
8:50AM	0	0	0	1
8:55AM	0	0	0	0

Data Provided by K-D-N. com 503-594-4224

PERCENT HEAVY VEHICLES

 PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				Total
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
2:00PM	0	15	0	0	1	14	0	0	1	1	0	0	1	0	2	0	35
2:05PM	2	16	0	0	0	9	1	0	0	0	1	0	0	0	0	0	29
2:10PM	2	32	2	0	2	14	0	0	0	0	1	0	1	0	1	0	55
2:15PM	1	27	0	0	0	10	0	0	0	0	0	0	0	0	2	0	40
2:20PM	3	25	0	0	0	11	1	0	0	0	3	0	0	1	0	0	44
2:25PM	0	26	1	0	0	8	1	0	1	0	0	0	0	0	0	0	37
2:30PM	0	28	0	0	0	8	0	0	0	2	1	0	0	0	0	0	39
2:35PM	4	25	2	0	0	13	1	0	0	0	0	0	0	0	0	0	45
2:40PM	0	14	1	0	0	12	0	0	0	0	0	0	0	0	0	0	27
2:45PM	0	16	0	0	0	19	0	0	0	0	1	0	1	0	1	0	38
2:50PM	0	18	1	0	0	19	0	0	0	0	1	0	2	0	1	0	42
2:55PM	1	16	0	0	1	18	2	0	0	0	0	0	1	0	1	0	40
3:00PM	0	17	1	0	1	15	0	0	0	1	2	0	1	0	0	0	38
3:05PM	0	15	1	0	1	21	0	0	0	0	0	0	2	0	1	0	41
3:10PM	0	13	1	0	3	18	2	0	1	3	2	0	0	0	0	0	43
3:15PM	3	12	0	0	1	19	0	0	1	5	1	0	0	0	1	0	43
3:20PM	1	18	3	0	2	20	4	0	2	0	1	0	2	0	2	0	55
3:25PM	0	19	5	0	4	12	0	0	1	1	2	0	0	1	10	0	55
3:30PM	2	27	1	0	2	16	0	0	1	1	0	0	7	1	7	0	65
3:35PM	1	29	2	0	1	11	1	0	1	1	0	0	1	1	3	0	52
3:40PM	1	15	2	0	3	11	1	0	0	2	3	0	1	0	1	0	40
3:45PM	1	15	1	0	0	13	2	0	1	3	2	0	3	0	1	0	42
3:50PM	0	19	1	0	0	12	1	0	0	1	1	0	2	0	2	0	39
3:55PM	1	20	0	0	0	10	0	0	1	0	1	0	0	0	0	0	33

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
2:00PM	0	15	0	0	1	14	0	0	1	1	0	0	1	0	2	0
2:05PM	2	16	0	0	0	9	1	0	0	0	1	0	0	0	0	0
2:10PM	2	32	2	0	2	13	0	0	0	0	1	0	1	0	1	0
2:15PM	1	27	0	0	0	10	0	0	0	0	0	0	0	0	1	0
2:20PM	3	23	0	0	0	10	1	0	0	0	3	0	0	1	0	0
2:25PM	0	26	1	0	0	6	0	0	1	0	0	0	0	0	0	0
2:30PM	0	28	0	0	0	7	0	0	0	2	1	0	0	0	0	0
2:35PM	3	24	2	0	0	13	1	0	0	0	0	0	0	0	0	0
2:40PM	0	14	1	0	0	10	0	0	0	0	0	0	0	0	0	0
2:45PM	0	16	0	0	0	19	0	0	0	0	1	0	1	0	1	0
2:50PM	0	16	0	0	0	19	0	0	0	0	1	0	2	0	1	0
2:55PM	1	14	0	0	1	18	2	0	0	0	0	0	0	0	1	0
3:00PM	0	17	1	0	1	14	0	0	0	1	2	0	1	0	0	0
3:05PM	0	14	1	0	1	18	0	0	0	0	0	0	2	0	1	0
3:10PM	0	13	1	0	3	15	2	0	1	3	2	0	0	0	0	0
3:15PM	3	11	0	0	1	18	0	0	1	5	1	0	0	0	1	0
3:20PM	1	17	3	0	2	20	4	0	2	0	1	0	2	0	2	0
3:25PM	0	18	4	0	4	11	0	0	1	1	2	0	0	1	10	0
3:30PM	2	27	1	0	2	16	0	0	1	1	0	0	7	1	7	0
3:35PM	0	24	2	0	1	11	1	0	1	1	0	0	1	1	3	0
3:40PM	1	14	2	0	3	11	1	0	0	2	3	0	0	0	1	0
3:45PM	1	15	1	0	0	13	2	0	1	1	2	0	3	0	1	0
3:50PM	0	19	1	0	0	12	1	0	0	1	1	0	2	0	2	0
3:55PM	1	20	0	0	0	10	0	0	1	0	1	0	0	0	0	0

KEY DATA NETWOFK				
Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
2:00PM	0	0	0	0
2:05PM	0	0	0	0
2:10PM	0	1	0	0
2:15PM	0	1	1	0
2:20PM	0	0	0	0
2:25PM	0	0	0	0
2:30PM	0	0	0	1
2:35PM	0	0	1	0
2:40PM	0	1	0	0
2:45PM	0	1	0	1
2:50PM	1	0	0	0
2:55PM	0	2	0	2
3:00PM	0	0	0	0
3:05PM	0	0	0	3
3:10PM	1	0	0	2
3:15PM	0	0	1	0
3:20PM	3	1	0	12
3:25PM	8	0	1	9
3:30PM	5	1	4	18
3:35PM	1	0	0	5
3:40PM	6	0	4	1
3:45PM	1	0	2	5
3:50PM	0	0	0	0
3:55PM	2	1	3	2

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

 PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn	Total												
4:00PM	1	18	1	0	1	14	1	0	1	1	0	0	0	0	1	0	39
4:05PM	0	16	0	0	0	14	2	0	0	2	6	0	1	1	1	0	43
4:10PM	1	18	0	0	0	19	2	0	1	0	- 1	0	0	0	0	0	42
4:15PM	3	13	0	0	2	16	0	0	0	0	3	0	3	0	1	0	41
4:20PM	0	13	1	0	3	18	0	0	0	1	1	0	1	1	0	0	39
4:25PM	0	12	0	0	3	16	0	0	0	1	12	0	0	0	2	0	36
4:30PM	0	22	0	0	2	7	1	0	1	2	21	0	0	0	1	0	37
4:35PM	3	14	0	0	1	17	1	0	2	2	20	0	1	1	1	0	43
4:40PM	0	23	0	0	1	13	1	0	2	2	21	0	0	0	0	0	43
4:45PM	0	15	1	0	1	30	1	0	1	2	0	0	1	0	0	0	52
4:50PM	0	18	1	0	4	18	0	0	1	0	2	0	1	0	1	0	46
4:55PM	1	16	1	0	4	18	1	0	1	0	3	0	0	0	0	0	45
5:00PM	0	21	0	0	0	16	4	0	0	2	2	0	3	0	0	0	48
5:05PM	1	31	1	0	0	11	1	0	2	0	2	0	1	0	0	0	50
5:10PM	2	27	1	0	2	13	1	0	0	1	3	0	0	0	3	0	53
5:15PM	1	16	2	0	1	17	1	0	3	2	2	0	0	1	3	0	49
5:20PM	1	12	0	0	0	22	1	0	0	0	2	0	0	- 1	0	0	39
5:25PM	2	26	1	0	3	19	0	0	0	0	1	0	0	0	3	0	55
5:30PM	0	23	0	0	0	22	1	0	0	1	3	0	0	0	4	0	54
5:35PM	0	15	0	0	3	17	1	0	0	3	3	0	0	0	2	0	44
5:40PM	0	14	0	0	0	20	0	0	1	1	5	0	1	0	2	0	44
5:45PM	0	21	0	0	1	13	0	0	1	6	3	0	1	1	4	0	51
5:50PM	3	20	0	0	4	21	1	0	1	2	2	0	1	0	0	0	55
5:55PM	1	16	0	0	6	21	0	0	0	0	1	0	2	0	1	0	48

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
4:00PM	1	18	1	0	1	14	1	0	1	1	0	0	0	0	1	0
4:05PM	0	16	0	0	0	13	2	0	0	2	5	0	1	1	1	0
4:10PM	0	18	0	0	0	19	2	0	1	0	1	0	0	0	0	0
4:15PM	3	13	0	0	2	15	0	0	0	0	3	0	3	0	0	0
4:20PM	0	13	1	0	3	18	0	0	0	1	1	0	1	1	0	0
4:25PM	0	12	0	0	3	16	0	0	0	1	2	0	0	0	2	0
4:30PM	0	22	0	0	2	7	1	0	1	2	1	0	0	0	1	0
4:35PM	3	14	0	0	1	15	1	0	2	2	0	0	1	1	1	0
4:40PM	0	23	0	0	1	13	1	0	2	2	1	0	0	0	0	0
4:45PM	0	15	1	0	1	29	1	0	1	2	0	0	1	0	0	0
4:50PM	0	18	1	0	4	18	0	0	1	0	2	0	1	0	1	0
4:55PM	1	15	1	0	4	18	1	0	1	0	2	0	0	0	0	0
5:00PM	0	21	0	0	0	16	4	0	0	2	2	0	3	0	0	0
5:05PM	1	31	1	0	0	11	1	0	2	0	2	0	1	0	0	0
5:10PM	2	26	1	0	1	13	1	0	0	1	3	0	0	0	3	0
5:15PM	1	16	2	0	1	16	1	0	3	2	2	0	0	1	3	0
5:20PM	1	10	0	0	0	21	1	0	0	0	2	0	0	- 1	0	0
5:25PM	2	26	1	0	3	19	0	0	0	0	1	0	0	0	3	0
5:30PM	0	23	0	0	0	21	1	0	0	1	3	0	0	0	4	0
5:35PM	0	15	0	0	3	17	1	0	0	3	3	0	0	0	2	0
5:40PM	0	14	0	0	0	20	0	0	1	1	5	0	1	0	2	0
5:45PM	0	21	0	0	1	13	0	0	1	6	3	0	1	1	4	0
5:50PM	3	20	0	0	4	21	1	0	1	2	2	0	1	0	0	0
5:55PM	1	16	0	0	6	21	0	0	0	0	1	0	2	0	1	0

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Other Vehicles | | | |
| | Northbound | Southbound | Eastbound | Westbound |
| Northbound Approach | Southbound Approach | Eastbound Approach | Westbound Approach | |

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
4:00PM	1	0	0	0
4:05PM	0	0	0	1
4:10PM	2	0	0	0
4:15PM	0	0	1	0
4:20PM	0	0	1	1
4:25PM	1	0	0	0
4:30PM	0	0	0	1
4:35PM	0	2	0	1
4:40PM	0	9	0	1
4:45PM	0	3	0	2
4:50PM	0	2	1	2
4:55PM	0	0	1	1
5:00PM	0	1	1	1
5:05PM	5	1	5	1
5:10PM	0	0	0	0
5:15PM	0	0	1	0
5:20PM	0	0	0	0
5:25PM	0	0	0	0
5:30PM	0	1	0	1
5:35PM	0	0	0	0
5:40PM	0	0	0	0
5:45PM	21	0	0	2
5:50PM	3	0	0	0
5:55PM	23	0	0	0

KEY DATA NETWOFIK

Data Provided by K-D-N.com 503-594-4224

Study Name	NE Evans St at NE 15th St		
Location	$45.21--123.19$		
Start Date	$9 / 20 / 2016$		
Start Time	$7: 00$ AM		
Key Data Summary			
Peak Hour Start	7:30AM System Peak Hour Start		
Peak 15 Min Start	$8: 00$ AM System Peak 15 Min Start		
PHF (5-Min Interval)	0.69	PHF (15-Min Interval)	
PEAK-HOUR VOLUMES			0.72

NBLeft		NBThru	NBRight	SBLeft		SBThru	SBRight	EBLeft	EBThru	EBRight		WBLeft	WBThru	WBRight	NBEntering	SBEntering	EBEntering	WBEntering	NBLeaving	SBLeaving	EBLeaving		WBLeaving
	9	86	164		73	151		5	1	1	2			192	240	179	15	238	259	229			18

PEAK-HOUR VOLUMES- PEDESTRIANS

North South East | | West | |
| :--- | :--- | :--- |
| 3 | 87 | 13 |

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight

All Vehicle Volumes																	Total
	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
7:00AM	0	6	0	0	2	4	1	0	0	0	0	0	1	0	2	0	16
7:05AM	0	3	6	0	2	7	0	0	0	0	0	0	3	0	1	0	22
7:10AM	3	4	0	0	1	7	0	0	0	0	0	0	2	0	5	0	22
7:15AM	1	5	2	0	0	3	2	0	1	0	0	0	0	0	1	0	15
7:20AM	0	3	7	0	1	21	1	0	0	0	0	0	1	0	2	0	36
7:25AM	0	3	5	0	6	3	1	0	0	0	0	0	0	1	5	0	24
7:30AM	1	10	8	0	3	11	1	0	0	0	1	0	5	0	1	0	41
7:35AM	0	5	6	0	5	9	1	0	0	0	0	0	3	0	4	0	33
7:40AM	1	8	7	0	3	8	1	0	0	0	0	0	3	0	3	0	34
7:45AM	1	3	8	0	5	16	0	0	0	0	0	0	8	0	5	0	46
7:50AM	2	12	14	0	6	12	0	0	0	0	0	0	3	0	5	0	54
7:55AM	1	5	18	0	5	18	0	0	0	1	0	0	11	0	11	0	70
8:00AM	1	7	18	0	13	12	0	0	0	0	0	0	9	0	17	0	77
8:05AM	1	11	23	0	12	10	1	0	0	0	0	0	9	0	8	0	75
8:10AM	0	11	19	0	10	15	1	0	0	0	0	0	14	0	11	0	81
8:15AM	0	1	27	0	6	18	0	0	0	0	0	0	12	0	11	0	75
8:20AM	1	6	13	0	5	12	0	0	0	0	0	0	7	0	10	0	54
8:25AM	0	7	3	0	0	10	0	0	1	0	1	0	3	1	6	0	32
8:30AM	0	6	3	0	0	8	0	0	1	0	0	0	4	0	1	0	23
8:35AM	0	4	1	0	1	10	0	0	0	0	0	0	1	0	1	0	18
8:40AM	0	5	0	0	1	12	0	0	0	0	0	0	2	0	1	0	21
8:45AM	0	6	1	0	1	10	0	0	0	0	0	0	1	0	1	0	20
8:50AM	0	7	1	0	2	9	0	0	0	0	0	0	2	0	1	0	22
8:55AM	1	6	1	0	2	9	1	0	0	0	0	0	2	0	0	0	22

KEY DATA NETWOFIK

	Lights															
	Northbound				Southbound				Eastbound				Westbound			
	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach			
Time	Left	Thru	Right	U-Turn												
7:00AM	0	6	0	0	2	4	1	0	0	0	0	0	1	0	2	0
7:05AM	0	3	6	0	2	6	0	0	0	0	0	0	3	0	1	0
7:10AM	3	4	0	0	1	7	0	0	0	0	0	0	2	0	5	0
7:15AM	1	5	2	0	0	3	2	0	1	0	0	0	0	0	1	0
7:20AM	0	3	6	0	1	18	1	0	0	0	0	0	1	0	2	0
7:25AM	0	2	5	0	6	3	1	0	0	0	0	0	0	1	4	0
7:30AM	1	9	8	0	3	11	1	0	0	0	1	0	5	0	1	0
7:35AM	0	5	6	0	5	9	1	0	0	0	0	0	3	0	4	0
7:40AM	1	7	7	0	3	8	1	0	0	0	0	0	3	0	3	0
7:45AM	1	3	8	0	5	16	0	0	0	0	0	0	8	0	4	0
7:50AM	2	12	14	0	6	12	0	0	0	0	0	0	3	0	5	0
7:55AM	1	4	18	0	5	17	0	0	0	1	0	0	11	0	10	0
8:00AM	1	7	16	0	12	12	0	0	0	0	0	0	- 9	0	17	0
8:05AM	1	10	23	0	10	10	1	0	0	0	0	0	9	0	8	0
8:10AM	0	11	18	0	10	15	1	0	0	0	0	0	14	0	10	0
8:15AM	0	1	26	0	6	18	0	0	0	0	0	0	12	0	11	0
8:20AM	1	6	13	0	5	12	0	0	0	0	0	0	5	0	8	0
8:25AM	0	6	3	0	0	10	0	0	1	0	1	0	3	1	4	0
8:30AM	0	6	3	0	0	7	0	0	1	0	0	0	4	0	1	0
8:35AM	0	3	1	0	1	9	0	0	0	0	0	0	- 1	0	1	0
8:40AM	0	5	0	0	1	12	0	0	0	0	0	0	2	0	1	0
8:45AM	0	6	1	0	1	10	0	0	0	0	0	0	1	0	1	0
8:50AM	0	7	1	0	2	9	0	0	0	0	0	0	2	0	1	0
8:55AM	1	6	1	0	2	9	1	0	0	0	0	0	2	0	0	0

	Other Vehicles		
	Northbound	Southbound	Eastbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound

Time	Left	Thru	Right	U-Turn												
7:00AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:05AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7:10AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:20AM	0	0	1	0	0	3	0	0	0	0	0	0	0	0	0	0
7:25AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:30AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:35AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:40AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:50AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:55AM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0
8:00AM	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0
8:05AM	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0
8:10AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0
8:15AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:20AM	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0
8:25AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0
8:30AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
8:35AM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
8:40AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:50AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:55AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
7:00AM	0	0	0	0
7:05AM	0	0	0	0
7:10AM	0	1	0	1
7:15AM	0	1	0	0
7:20AM	0	0	0	1
7:25AM	0	3	0	0
7:30AM	0	3	0	1
7:35AM	1	13	3	1
7:40AM	0	9	1	0
7:45AM	0	5	0	3
7:50AM	0	8	0	6
7:55AM	0	9	0	1
8:00AM	0	8	1	1
8:05AM	0	10	5	4
8:10AM	1	5	0	0
8:15AM	0	8	1	1
8:20AM	0	5	0	1
8:25AM	1	4	2	0
8:30AM	0	3	0	0
8:35AM	0	1	1	0
8:40AM	0	0	1	2
8:45AM	0	9	0	0
8:50AM	0	0	0	0
8:55AM	0	1	0	1

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West
PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight

All Vehicle Volumes																	Total
	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
2:00PM	0	15	2	0	1	12	0	0	0	0	0	0	6	0	2	0	38
2:05PM	0	16	3	0	0	10	0	0	0	0	0	0	1	0	0	0	30
2:10PM	0	34	1	0	2	14	0	0	1	0	0	0	2	0	1	0	55
2:15PM	0	28	1	0	0	9	1	0	1	0	0	0	1	0	1	0	42
2:20PM	0	24	1	0	0	17	0	0	2	0	0	0	0	0	1	0	45
2:25PM	1	27	2	0	0	11	0	0	0	0	0	0	1	0	1	0	43
2:30PM	0	28	1	0	1	9	0	0	0	0	0	0	1	1	0	0	41
2:35PM	0	27	1	0	0	9	0	0	1	0	0	0	0	0	2	0	40
2:40PM	0	14	0	0	1	13	2	0	0	0	1	0	1	0	0	0	32
2:45PM	0	16	0	0	0	19	0	0	1	0	0	0	0	0	1	0	37
2:50PM	0	18	1	0	4	17	0	0	0	0	1	0	0	0	1	0	42
2:55PM	0	14	4	0	1	17	1	0	0	0	1	0	0	0	3	0	41
3:00PM	0	16	3	0	0	13	1	0	0	0	0	0	0	0	1	0	34
3:05PM	0	17	6	0	7	20	0	0	0	0	0	0	1	0	0	0	51
3:10PM	1	11	10	0	7	14	1	0	0	0	0	0	3	0	2	0	49
3:15PM	1	13	10	0	3	11	2	0	0	0	0	0	1	0	3	0	44
3:20PM	2	17	5	0	4	9	0	0	0	1	0	0	2	0	5	0	45
3:25PM	1	14	4	0	4	15	1	0	0	0	6	0	9	1	11	0	66
3:30PM	1	13	2	0	3	17	0	0	0	0	2	0	13	0	14	0	65
3:35PM	0	20	0	0	2	15	0	0	1	1	1	0	10	0	11	0	61
3:40PM	0	13	10	0	4	14	0	0	0	0	0	0	6	0	4	0	51
3:45PM	0	13	5	0	5	10	1	0	1	0	0	0	3	0	2	0	40
3:50PM	0	15	8	0	1	14	0	0	2	0	1	0	10	1	3	0	55
3:55PM	0	19	4	0	1	11	0	0	0	0	0	0	1	0	3	0	39

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
2:00PM	0	15	2	0	1	11	0	0	0	0	0	0	5	0	2	0
2:05PM	0	16	3	0	0	10	0	0	0	0	0	0	1	0	0	0
2:10PM	0	34	1	0	2	13	0	0	1	0	0	0	2	0	1	0
2:15PM	0	28	1	0	0	9	1	0	1	0	0	0	1	0	1	0
2:20PM	0	23	1	0	0	15	0	0	2	0	0	0	0	0	0	0
2:25PM	1	27	2	0	0	8	0	0	0	0	0	0	1	0	1	0
2:30PM	0	28	0	0	1	7	0	0	0	0	0	0	1	1	0	0
2:35PM	0	27	1	0	0	9	0	0	1	0	0	0	0	0	1	0
2:40PM	0	14	0	0	1	11	2	0	0	0	1	0	1	0	0	0
2:45PM	0	16	0	0	0	19	0	0	1	0	0	0	0	0	1	0
2:50PM	0	16	1	0	4	17	0	0	0	0	1	0	0	0	1	0
2:55PM	0	13	4	0	1	17	1	0	0	0	1	0	0	0	2	0
3:00PM	0	16	3	0	0	13	1	0	0	0	0	0	0	0	1	0
3:05PM	0	16	6	0	7	16	0	0	0	0	0	0	- 1	0	0	0
3:10PM	1	11	9	0	6	13	1	0	0	0	0	0	3	0	2	0
3:15PM	1	12	9	0	2	11	2	0	0	0	0	0	1	0	3	0
3:20PM	2	17	5	0	4	9	0	0	0	1	0	0	2	0	5	0
3:25PM	1	13	4	0	3	15	1	0	0	0	6	0	8	1	10	0
3:30PM	1	13	2	0	3	17	0	0	0	0	2	0	13	0	14	0
3:35PM	0	17	0	0	2	15	0	0	1	1	1	0	9	0	8	0
3:40PM	0	13	10	0	3	14	0	0	0	0	0	0	6	0	3	0
3:45PM	0	13	5	0	5	10	1	0	1	0	0	0	3	0	2	0
3:50PM	0	15	8	0	1	14	0	0	2	0	1	0	10	1	3	0
3:55PM	0	19	4	0	1	11	0	0	0	0	0	0	1	0	3	0

-

KEY DATA NETMOFKK				
Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
2:00PM	0	1	0	0
2:05PM	0	0	0	7
2:10PM	0	1	1	0
2:15PM	0	0	0	0
2:20PM	0	45	0	0
2:25PM	0	0	0	0
2:30PM	0	1	1	1
2:35PM	0	3	1	0
2:40PM	0	1	0	0
2:45PM	0	11	0	1
2:50PM	0	13	0	0
2:55PM	0	2	0	2
3:00PM	0	4	0	0
3:05PM	0	20	0	1
3:10PM	0	30	0	7
3:15PM	1	4	0	2
3:20PM	0	7	0	1
3:25PM	1	34	7	11
3:30PM	3	35	5	4
3:35PM	3	36	1	1
3:40PM	0	14	0	6
3:45PM	3	9	0	0
3:50PM	0	2	0	0
3:55PM	0	2	0	0

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

 PEAK-HOUR VOLUMES- PEDESTRIANS

North	South	East	West
0	21	8	7

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn	Total												
4:00PM	0	16	2	0	0	14	0	0	1	0	1	0	4	0	3	0	41
4:05PM	0	14	0	0	1	17	1	0	0	0	1	0	5	0	1	0	40
4:10PM	0	16	2	0	2	17	0	0	1	0	0	0	1	0	2	0	41
4:15PM	0	16	0	0	1	17	2	0	0	0	0	0	2	0	2	0	40
4:20PM	0	13	2	0	2	20	1	0	0	1	0	0	1	0	1	0	41
4:25PM	1	10	4	0	1	15	0	0	0	0	0	0	2	0	1	0	34
4:30PM	0	20	5	0	2	10	0	0	0	2	1	0	2	0	4	0	46
4:35PM	1	13	1	0	4	11	1	0	0	0	0	0	1	0	4	0	36
4:40PM	0	19	3	0	3	11	0	0	2	0	2	0	0	0	1	0	41
4:45PM	1	15	3	0	3	26	1	0	0	0	0	0	2	0	0	0	51
4:50PM	1	15	4	0	1	17	2	0	1	0	0	0	1	0	2	0	44
4:55PM	0	14	1	0	0	21	1	0	1	0	0	0	2	1	3	0	44
5:00PM	4	19	5	0	1	14	3	0	0	1	1	0	2	1	2	0	53
5:05PM	0	28	4	0	1	12	6	0	1	0	2	0	2	0	4	0	60
5:10PM	1	26	2	0	0	13	1	0	0	1	1	0	3	1	5	0	54
5:15PM	1	17	4	0	2	17	1	0	1	0	1	0	3	0	1	0	48
5:20PM	0	11	1	0	2	17	1	0	0	0	0	0	4	1	2	0	39
5:25PM	1	23	5	0	2	20	2	0	1	0	1	0	4	0	5	0	64
5:30PM	2	18	3	0	2	14	4	0	0	1	1	0	7	1	4	0	57
5:35PM	1	10	2	0	1	22	1	0	2	0	1	0	3	0	3	0	46
5:40PM	0	11	9	0	2	20	1	0	1	0	2	0	8	0	2	0	56
5:45PM	2	13	1	0	2	19	0	0	1	5	0	0	7	1	7	0	58
5:50PM	0	16	4	0	0	23	0	0	1	0	0	0	6	0	6	0	56
5:55PM	0	8	9	0	3	17	2	0	0	0	0	0	7	0	8	0	54

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
4:00PM	0	16	2	0	0	14	0	0	1	0	1	0	4	0	3	0
4:05PM	0	14	0	0	1	15	1	0	0	0	1	0	5	0	1	0
4:10PM	0	16	2	0	2	17	0	0	1	0	0	0	1	0	1	0
4:15PM	0	16	0	0	0	17	2	0	0	0	0	0	2	0	2	0
4:20PM	0	13	2	0	2	20	1	0	0	1	0	0	1	0	1	0
4:25PM	1	10	4	0	1	15	0	0	0	0	0	0	2	0	1	0
4:30PM	0	20	5	0	2	10	0	0	0	2	1	0	2	0	4	0
4:35PM	1	13	1	0	4	10	1	0	0	0	0	0	1	0	4	0
4:40PM	0	19	3	0	3	11	0	0	2	0	2	0	0	0	1	0
4:45PM	1	15	3	0	3	26	1	0	0	0	0	0	2	0	0	0
4:50PM	1	15	4	0	1	17	2	0	1	0	0	0	1	0	2	0
4:55PM	0	14	1	0	0	20	1	0	1	0	0	0	2	1	3	0
5:00PM	4	19	5	0	1	14	3	0	0	1	1	0	2	1	1	0
5:05PM	0	28	4	0	1	12	6	0	1	0	2	0	2	0	4	0
5:10PM	1	25	2	0	0	13	1	0	0	1	1	0	3	1	5	0
5:15PM	1	17	4	0	2	16	1	0	1	0	1	0	3	0	1	0
5:20PM	0	9	1	0	2	16	1	0	0	0	0	0	4	1	2	0
5:25PM	1	23	5	0	2	20	2	0	1	0	1	0	4	0	5	0
5:30PM	2	18	3	0	2	14	4	0	0	1	1	0	7	1	4	0
5:35PM	1	10	2	0	1	22	1	0	2	0	1	0	3	0	3	0
5:40PM	0	11	9	0	2	20	1	0	1	0	2	0	8	0	2	0
5:45PM	2	13	1	0	2	19	0	0	1	5	0	0	7	1	7	0
5:50PM	0	16	4	0	0	23	0	0	1	0	0	0	6	0	6	0
5:55PM	0	8	9	0	3	17	2	0	0	0	0	0	7	0	8	0

	Other Vehicles			
Northbound	Southbound	Eastbound	Westbound	
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach	

KEY DATA NETWOFKK

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
4:00PM	0	5	0	0
4:05PM	3	5	1	1
4:10PM	1	3	0	0
4:15PM	1	0	- 1	1
4:20PM	0	5	1	0
4:25PM	0	1	0	0
4:30PM	0	4	0	0
4:35PM	4	7	0	1
4:40PM	0	13	0	5
4:45PM	1	5	0	2
4:50PM	0	5	0	0
4:55PM	0	2	0	0
5:00PM	0	4	1	1
5:05PM	0	1	1	0
5:10PM	0	2	1	1
5:15PM	0	0	1	0
5:20PM	0	1	0	0
5:25PM	0	3	- 1	0
5:30PM	0	1	1	0
5:35PM	0	0	0	0
5:40PM	0	4	0	2
5:45PM	0	4	2	2
5:50PM	0	0	0	1
5:55PM	0	1	0	0

Data Provided by K-D-N.com 503-594-4224

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbo	ound			South					Eastbou	und			Wes	ound			Total
Start	Northbound Approach				Southbound Approach					Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn	Left	Thru	Right		J-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	
7:00AM	0	1		0		1	0		0	0	0	0	0					2
7:05AM	0	0		0		5	0		0		1	0	0					6
7:10AM	0	0		0		2	0		0		0	0	0					2
7:15AM	0	0		0		2	0		0		0	0	0					2
7:20AM	0	1		0		5	0		0		0	10	0					16
7:25AM	0	4		0		4	0		0		0	5	5					13
7:30AM	0	0		0		4	0		0		2	3	0					9
7:35AM	0	0		0		3	1		0		1	3	0					8
7:40AM	0	3		0		2	0		0		1	2	0					8
7:45AM	0	2		0		5	1		0		1	4	0					13
7:50AM	0	3		0		14	0		0		1	6	0					24
7:55AM	0	4		0		13	1		0		3	14	0					35
8:00AM	0	6		0		21	2		0		3	7	0					39
8:05AM	0	4		0		19	7		0		1	6	0					47
8:10AM	0	8		0		25	- 1		0		6	16	0					56
8:15AM	0	8		0		16	4		0		7	13	0					48
8:20AM	0	5		0		6	2		0		4	3	0					20
8:25AM	0	2		0		1	0		0		1	3	0					7
8:30AM	0	2		0		0	0		0		0	0	0					2
8:35AM	0	0		0		1	0		0		0	0	0					1
8:40AM	0	2		0		0	1		0		0	1	0					4
8:45AM	0	0		0		0	0		0		1	0	0					1
8:50AM	0	0		0		0	0		0		1	2	0					3
8:55AM	0	0		0		1		0	0		0	0	0					1

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
7:00AM	0	1		0		1	0	0	0		0	0				
7:05AM	0	0		0		5	0	0	1		0	0				
7:10AM	0	0		0		2	0	0	0		0	0				
7:15AM	0	0		0		1	0	0	0		0	0				
7:20AM	0	1		0		5	0	0	0		10	0				
7:25AM	0	4		0		4	0	0	0		5	0				
7:30AM	0	0		0		4	0	0	2		3	0				
7:35AM	0	0		0		3	0	0	1		3	0				
7:40AM	0	3		0		2	0	0	1		2	0				
7:45AM	0	2		0		4	1	0	1		4	0				
7:50AM	0	3		0		14	0	0	1		6	0				
7:55AM	0	4		0		13	1	0	3		14	0				
8:00AM	0	4		0		19	2	0	3		7	0				
8:05AM	0	2		0		16	7	0	11		6	0				
8:10AM	0	7		0		18	1	0	6		16	0				
8:15AM	0	7		0		12	3	0	7		13	0				
8:20AM	0	5		0		6	2	0	4		3	0				
8:25AM	0	2		0		1	0	0	1		3	0				
8:30AM	0	2		0		0	0	0	0		0	0				
8:35AM	0	0		0		1	0	0	0		0	0				
8:40AM	0	2		0		0	1	0	0		1	0				
8:45AM	0	0		0		0	0	0	- 1		0	0				
8:50AM	0	0		0		0	0	0	- 1		2	0				
8:55AM	0	0		0		1	0	0	0		0	0				
	Other Vehicles															
	Northbound				Southbound				Eastbound				Westbound			
	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach			

Time	Left	Thru	Right	U-Turn												
7:00AM	0	0		0		0	0	0	0		0	0				
7:05AM	0	0		0		0	0	0	0		0	0				
7:10AM	0	0		0		0	0	0	0		0	0				
7:15AM	0	0		0		1	0	0	0		0	0				
7:20AM	0	0		0		0	0	0	0		0	0				
7:25AM	0	0		0		0	0	0	0		0	0				
7:30AM	0	0		0		0	0	0	0		0	0				
7:35AM	0	0		0		0	1	0	0		0	0				
7:40AM	0	0		0		0	0	0	0		0	0				
7:45AM	0	0		0		1	0	0	0		0	0				
7:50AM	0	0		0		0	0	0	0		0	0				
7:55AM	0	0		0		0	0	0	0		0	0				
8:00AM	0	2		0		2	0	0	0		0	0				
8:05AM	0	2		0		3	0	0	0		0	0				
8:10AM	0	1		0		7	0	0	0		0	0				
8:15AM	0	1		0		4	1	0	0		0	0				
8:20AM	0	0		0		0	0	0	0		0	0				
8:25AM	0	0		0		0	0	0	0		0	0				
8:30AM	0	0		0		0	0	0	0		0	0				
8:35AM	0	0		0		0	0	0	0		0	0				
8:40AM	0	0		0		0	0	0	0		0	0				
8:45AM	0	0		0		0	0	0	0		0	0				
8:50AM	0	0		0		0	0	0	0		0	0				
8:55AM	0	0		0		0	0	0	0		0	0				

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
7:00AM	0	0	0	
7:05AM	0	0	0	
7:10AM	0	0	0	
7:15AM	0	0	0	
7:20AM	0	0	0	
7:25AM	0	0	0	
7:30AM	0	0	0	
7:35AM	1	0	0	
7:40AM	2	0	0	
7:45AM	2	0	0	
7:50AM	2	0	0	
7:55AM	4	0	3	
8:00AM	5	2	2	
8:05AM	6	0	4	
8:10AM	12	0	0	
8:15AM	15	0	11	
8:20AM	5	0	1	
8:25AM	9	0	2	
8:30AM	38	0	0	
8:35AM	0	0	0	
8:40AM	0	2	0	
8:45AM	1	0	0	
8:50AM	2	0	0	
8:55AM	2	0	0	

GEY DATA NETWOFK

0.0\%	30.3\%	34.8\%	0.0\%	0.0\%	16.7\%	26.8\%	17.9\%		23.3\%		

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West
$\begin{array}{lll}33 & 1 & 2\end{array}$
PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight

All Vehicle Volumes																	Total
	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
2:00PM	0	1		0		0	0	0	1		1	0					3
2:05PM	0	0		0		1	0	0	0		0	0					1
2:10PM	0	1		0		1	0	0	0		1	0					3
2:15PM	0	3		0		0	0	0	0		0	0					3
2:20PM	0	0		0		1	0	0	0		1	0					2
2:25PM	0	1		0		1	0	0	1		0	0					3
2:30PM	0	0		0		0	0	0	1		2	0					3
2:35PM	0	0		0		2	0	0	0		0	0					2
2:40PM	2	0		0		0	0	0	1		0	0					3
2:45PM	0	1		0		0	2	0	1		0	0					4
2:50PM	1	1		0		0	0	0	0		0	0					2
2:55PM	0	1		0		1	1	0	1		0	0					4
3:00PM	0	0		0		1		0	1		1	0					4
3:05PM	1	0		0		1		1	4		1	0					10
3:10PM	1	0		0		1		0	0		3	0					6
3:15PM	0	0		0		3	3	0	2		0	0					8
3:20PM	0	0		0		3		0	2		1	0					11
3:25PM	0	0		0		1	8	0	4		0	0					13
3:30PM	0	10		0		1	8	0	3		1	0					23
3:35PM	4	12		0		2	0	0	2		2	0					22
3:40PM	1	4		0		3		0	2		5	0					15
3:45PM	2	4		0		5	0	0	1		3	0					15
3:50PM	1	2		0		1		0	1		1	1					6
3:55PM	0	2		0		1	0	0	0		1	0					4

	Lights		
	Northbound	Southbound	Eastbound

Time	Left	Thru	Right	U-Turn												
2:00PM	0	0		0		0	0	0	0		0	0				
2:05PM	0	0		0		0	0	0	0		0	0				
2:10PM	0	0		0		0	0	0	0		0	0				
2:15PM	0	0		0		0	0	0	0		0	0				
2:20PM	0	0		0		0	0	0	0		0	0				
2:25PM	0	0		0		0	0	0	0		0	0				
2:30PM	0	0		0		0	0	0	0		0	0				
2:35PM	0	0		0		0	0	0	0		0	0				
2:40PM	0	0		0		0	0	0	0		0	0				
2:45PM	0	0		0		0	0	0	0		0	0				
2:50PM	0	0		0		0	0	0	0		0	0				
2:55PM	0	0		0		0	0	0	0		0	0				
3:00PM	0	0		0		0	0	0	0		0	0				
3:05PM	0	0		0		0	0	0	0		0	0				
3:10PM	0	0		0		0	0	0	0		0	0				
3:15PM	0	0		0		3	0	0	0		0	0				
3:20PM	0	0		0		2	0	0	0		0	0				
3:25PM	0	0		0		1	0	0	0		0	0				
3:30PM	0	9		0		1	0	0	0		1	0				
3:35PM	0	1		0		1	0	0	0		0	0				
3:40PM	0	0		0		0	0	0	0		0	0				
3:45PM	0	0		0		0	0	0	0		2	0				
3:50PM	0	0		0		0	0	0	0		0	0				
3:55PM	0	0		0		0	0	0	0		0	0				

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
2:00PM	0	0	0	
2:05PM	0	0	0	
2:10PM	0	0	0	
2:15PM	0	0	0	
2:20PM	0	0	0	
2:25PM	0	0	0	
2:30PM	2	0	0	
2:35PM	0	0	0	
2:40PM	0	0	0	
2:45PM	0	0	0	
2:50PM	0	0	0	
2:55PM	0	0	0	
3:00PM	0	0	0	
3:05PM	0	0	1	
3:10PM	6	1	0	
3:15PM	3	0	0	
3:20PM	8	0	0	
3:25PM	3	0	1	
3:30PM	2	0	0	
3:35PM	3	0	0	
3:40PM	0	0	0	
3:45PM	6	0	0	
3:50PM	2	0	0	
3:55PM	0	0	0	

Data Provided by K-D-N.com 503-594-4224

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				Total
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
4:00PM	0	3		0		0	0	0	1		1	0					5
4:05PM	1	3		0		1	0	0	0		1	0					6
4:10PM	0	1		0		0	0	0	0		0	0					1
4:15PM	0	0		0		1	0	0	0		0	0					1
4:20PM	1	1		0		0	0	0	2		4	0					8
4:25PM	1	0		0		3	0	0	0		2	0					6
4:30PM	1	0		0		1	0	0	0		4	0					6
4:35PM	1	2		0		4	0	0	0		2	0					9
4:40PM	0	1		0		2	0	0	0		1	0					4
4:45PM	0	4		0		3	0	0	0		1	0					8
4:50PM	2	2		0		6	0	0	1		5	0					16
4:55PM	0	1		0		3	1	0	0		4	0					9
5:00PM	2	2		0		4	1	0	0		0	0					9
5:05PM	1	1		0		2	0	0	1		0	0					5
5:10PM	1	1		0		1	1	0	0		0	0					4
5:15PM	1	3		0		4	1	0	1		4	0					14
5:20PM	1	1		0		4	0	0	0		0	0					6
5:25PM	2	3		0		2	0	0	0		2	0					9
5:30PM	2	2		0		1	0	0	0		3	0					8
5:35PM	1	2		0		1	0	0	2		2	0					8
5:40PM	5	3		0		2	0	0	0		1	0					11
5:45PM	1	0		0		1	0	0	1		5	0					8
5:50PM	1	3		0		6	0	0	0		6	0					16
5:55PM	2	3		0		3	0	0	0		4	0					12

	Lights		
	Northbound	Southbound	Eastbound

Time	Left	Thru	Right	U-Turn												
4:00PM	0	3		0		0	0	0	1		1	0				
4:05PM	1	3		0		1	0	0	0		1	0				
4:10PM	0	1		0		0	0	0	0		0	0				
4:15PM	0	0		0		1	0	0	0		0	0				
4:20PM	1	1		0		0	0	0	2		4	0				
4:25PM	1	0		0		2	0	0	0		2	0				
4:30PM	1	0		0		1	0	0	0		4	0				
4:35PM	1	2		0		4	0	0	0		2	0				
4:40PM	0	1		0		2	0	0	0		1	0				
4:45PM	0	4		0		3	0	0	0		1	0				
4:50PM	2	2		0		4	0	0	1		5	0				
4:55PM	0	1		0		3	1	0	0		4	0				
5:00PM	2	2		0		4	1	0	0		0	0				
5:05PM	1	1		0		2	0	0	1		0	0				
5:10PM	1	1		0		1	0	0	0		0	0				
5:15PM	1	3		0		4	1	0	1		4	0				
5:20PM	1	1		0		4	0	0	0		0	0				
5:25PM	2	3		0		2	0	0	0		2	0				
5:30PM	2	2		0		1	0	0	0		3	0				
5:35PM	1	2		0		1	0	0	2		2	0				
5:40PM	5	3		0		2	0	0	0		1	0				
5:45PM	1	0		0		1	0	0	1		5	0				
5:50PM	1	3		0		5	0	0	0		6	0				
5:55PM	2	3		0		3	0	0	0		4	0				
	Other Vehicles															
	Northbound				Southbound				Eastbound				Westbound			
	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach			

Time	Left	Thru	Right	U-Turn												
4:00PM	0	0		0		0	0	0	0		0	0				
4:05PM	0	0		0		0	0	0	0		0	0				
4:10PM	0	0		0		0	0	0	0		0	0				
4:15PM	0	0		0		0	0	0	0		0	0				
4:20PM	0	0		0		0	0	0	0		0	0				
4:25PM	0	0		0		1	0	0	0		0	0				
4:30PM	0	0		0		0	0	0	0		0	0				
4:35PM	0	0		0		0	0	0	0		0	0				
4:40PM	0	0		0		0	0	0	0		0	0				
4:45PM	0	0		0		0	0	0	0		0	0				
4:50PM	0	0		0		2	0	0	0		0	0				
4:55PM	0	0		0		0	0	0	0		0	0				
5:00PM	0	0		0		0	0	0	0		0	0				
5:05PM	0	0		0		0	0	0	0		0	0				
5:10PM	0	0		0		0	1	0	0		0	0				
5:15PM	0	0		0		0	0	0	0		0	0				
5:20PM	0	0		0		0	0	0	0		0	0				
5:25PM	0	0		0		0	0	0	0		0	0				
5:30PM	0	0		0		0	0	0	0		0	0				
5:35PM	0	0		0		0	0	0	0		0	0				
5:40PM	0	0		0		0	0	0	0		0	0				
5:45PM	0	0		0		0	0	0	0		0	0				
5:50PM	0	0		0		1	0	0	0		0	0				
5:55PM	0	0		0		0	0	0	0		0	0				

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
4:00PM	1	0	0	
4:05PM	0	0	0	
4:10PM	0	0	0	
4:15PM	0	0	0	
4:20PM	0	0	0	
4:25PM	1	1	0	
4:30PM	0	0	0	
4:35PM	0	0	0	
4:40PM	2	0	0	
4:45PM	7	0	0	
4:50PM	0	0	0	
4:55PM	5	0	0	
5:00PM	2	0	0	
5:05PM	1	0	0	
5:10PM	0	0	0	
5:15PM	0	0	0	
5:20PM	2	0	0	
5:25PM	0	0	0	
5:30PM	1	0	0	
5:35PM	0	0	0	
5:40PM	24	0	0	
5:45PM	0	0	1	
5:50PM	1	0	0	
5:55PM	4	0	0	

Data Provided by K-D-N. com 503-594-4224

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West
PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight

All Vehicle Volumes																	Total
	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
6:50AM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	4
6:55AM	0	1	0	0	0	0	3	0	2	2	0	0	0	0	0	0	8
7:00AM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
7:05AM	0	0	0	0	0	0	3	0	0	7	0	0	0	0	0	0	10
7:10AM	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	5
7:15AM	0	0	2	0	0	0	1	0	0	2	0	0	0	0	0	0	5
7:20AM	1	0	0	0	1	0	4	0	1	5	0	0	0	1	0	0	13
7:25AM	2	0	1	0	0	0	3	0	0	9	0	0	0	1	0	0	16
7:30AM	1	0	1	0	1	3	3	0	0	3	5	0	1	3	0	0	21
7:35AM	0	0	0	0	1	0	2	0	0	9	0	0	0	1	0	0	13
7:40AM	0	0	2	0	2	0	4	0	0	9	3	0	0	1	0	0	21
7:45AM	3	0	1	0	3	4	8	0	0	11	0	0	0	2	0	0	32
7:50AM	1	0	1	0	4	8	9	0	0	15	1	0	0	1	0	0	40
7:55AM	4	0	0	0	4	2	17	0	0	16	7	0	0	0	0	0	50
8:00AM	3	0	4	0	1	1	22	0	0	25	8	0	1	7	0	0	72
8:05AM	1	0	1	0	1	6	12	0	0	18	7	0	2	6	0	0	54
8:10AM	0	0	5	0	1	4	19	0	0	23	8	0	0	2	0	0	62
8:15AM	2	0	4	0	2	5	14	0	0	17	16	0	1	7	0	0	68
8:20AM	2	0	0	0	2	4	10	0	0	9	12	0	0	4	0	0	43
8:25AM	0	0	1	0	2	1	4	0	0	3	1	0	0	1	0	0	13
8:30AM	0	0	0	0	1	0	2	0	0	4	0	0	0	2	0	0	9
8:35AM	0	0	0	0	0	0	1	0	0	3	0	0	0	1	0	0	5
8:40AM	1	0	0	0	0	2	1	0	0	2	0	0	0	0	0	0	6
8:45AM	0	0	2	0	0	0	1	0	0	2	0	0	0	2	0	0	7
8:50AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
6:50AM	0	0	0	0	0	0	- 2	0	0	2	0	0	0	0	0	0
6:55AM	0	1	0	0	0	0	3	0	2	2	0	0	0	0	0	0
7:00AM	0	0	0	0	0	0	- 1	0	0	0	0	0	0	0	0	0
7:05AM	0	0	0	0	0	0	3	0	0	7	0	0	0	0	0	0
7:10AM	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0
7:15AM	0	0	2	0	0	0	1	0	0	2	0	0	0	0	0	0
7:20AM	1	0	0	0	1	0	- 4	0	1	5	0	0	0	1	0	0
7:25AM	1	0	1	0	0	0	3	0	0	9	0	0	0	1	0	0
7:30AM	1	0	1	0	1	3	3	0	0	3	5	0	1	3	0	0
7:35AM	0	0	0	0	1	0	2	0	0	9	0	0	0	1	0	0
7:40AM	0	0	2	0	2	0	4	0	0	9	3	0	0	1	0	0
7:45AM	3	0	1	0	3	4	8	0	0	11	0	0	0	1	-	0
7:50AM	0	0	1	0	4	8	89	0	0	15	1	0	0	1	0	0
7:55AM	4	0	0	0	4	2	17	0	0	16	7	0	0	0	0	0
8:00AM	3	0	4	0	1	1	22	0	0	22	8	0	1	7	70	0
8:05AM	1	0	1	0	1	6	12	0	0	18	7	0	2	6	0	0
8:10AM	0	0	5	0	1	4	18	0	0	22	8	0	0	2	0	0
8:15AM	2	0	4	0	2	4	12	0	0	16	16	0	1	7	0	0
8:20AM	2	0	0	0	2	4	7	0	0	-9	12	0	0	4	0	0
8:25AM	0	0	1	0	2	1	4	0	0	3	1	0	0	1	0	0
8:30AM	0	0	0	0	1	0	2	0	0	4	0	0	0	2	0	0
8:35AM	0	0	0	0	0	0	- 1	0	0	3	0	0	0	0	0	0
8:40AM	1	0	0	0	0	2	1	0	0	2	0	0	0	0	0	0
8:45AM	0	0	2	0	0	0	- 1	0	0	2	0	0	0	2	0	0
8:50AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


```
K-D-N
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|lllllll}
\hline 8:45AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 8:50AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
```

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
6:50AM	0	0	0	0
6:55AM	1	0	1	0
7:00AM	0	0	0	0
7:05AM	0	0	0	0
7:10AM	0	0	1	0
7:15AM	0	0	0	0
7:20AM	1	0	0	0
7:25AM	0	0	0	0
7:30AM	0	0	0	0
7:35AM	0	0	0	0
7:40AM	0	0	8	0
7:45AM	0	0	6	0
7:50AM	0	0	5	0
7:55AM	0	2	8	4
8:00AM	1	0	16	3
8:05AM	0	1	18	10
8:10AM	1	3	33	6
8:15AM	0	0	27	14
8:20AM	0	0	25	15
8:25AM	1	0	2	3
8:30AM	0	1	1	0
8:35AM	0	0	0	0
8:40AM	0	0	1	1
8:45AM	0	0	0	0
8:50AM	0	0	0	0

Data Provided by K-D-N.com 503-594-4224

0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	6.5\%	5.6\%	0.0\%	3.4\%	8.2\%	1.5\%	0.0\%	6.8\%	4.0\%	0.0\%	3.6\%	4.6\%	6.7\%

PEAK-HOUR VOLUMES- PEDESTRIANS

North	South	East	West
24	68	145	33

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight

All Vehicle Volumes																
	Northbound				Southbound				Eastbound				Westbound			
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach			
Time	Left	Thru	Right	U-Turn												
2:00PM	0	0	0	0	0	0	1	0	0	2	0	0	0	4	0	0
2:05PM	0	0	1	0	0	0	0	0	0	2	1	0	0	3	0	0
2:10PM	1	0	1	0	0	1	1	0	0	1	0	0	0	2	0	0
2:15PM	0	0	1	0	0	0	0	0	0	2	1	0	0	2	0	0
2:20PM	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
2:25PM	0	0	0	0	0	0	1	0	0	3	0	0	0	2	0	0
2:30PM	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
2:35PM	1	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0
2:40PM	0	0	1	0	1	1	1	0	0	3	0	0	0	0	0	0
2:45PM	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2:50PM	1	0	1	0	0	0	0	0	0	4	0	0	1	1	0	0
2:55PM	0	0	0	0	2	1	1	0	0	7	0	0	0	0	0	0
3:00PM	0	0	0	0	1	0	1	0	0	4	0	0	0	0	0	0
3:05PM	0	1	2	0	1	2	0	0	0	11	0	0	0	0	0	0
3:10PM	0	0	0	0	1	0	1	0	0	13	0	0	0	3	0	0
3:15PM	2	0	0	0	0	0	1	0	0	12	0	0	2	3	0	0
3:20PM	3	0	1	0	1	0	6	0	0	7	0	0	1	6	0	0
3:25PM	0	0	5	0	5	5	10	0	0	8	6	0	9	11	0	0
3:30PM	4	0	5	0	3	7	9	0	0	2	5	0	14	22	0	0
3:35PM	1	0	0	0	2	1	3	0	0	5	3	0	3	8	0	0
3:40PM	0	0	3	0	1	3	5	0	0	10	2	0	0	2	0	0
3:45PM	1	0	0	0	2	0	6	0	0	4	4	0	0	4	0	0
3:50PM	0	0	1	0	0	0	3	0	0	6	0	0	0	2	0	0
3:55PM	0	0	1	0	0	0	1	0	0	4	0	0	0	1	0	0

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
2:00PM	0	0	0	0	0	0	1	0	0	2	0	0	0	4	0	0
2:05PM	0	0	1	0	0	0	0	0	0	2	1	0	0	2	0	0
2:10PM	1	0	1	0	0	1	1	0	0	1	0	0	0	2	0	0
2:15PM	0	0	1	0	0	0	0	0	0	2	1	0	0	1	0	0
2:20PM	0	0	0	0	0	0	0	0	0	1	0	0	01	0	0	0
2:25PM	0	0	0	0	0	0	1	0	0	3	0	0	0	2	0	0
2:30PM	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
2:35PM	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
2:40PM	0	0	1	0	1	1	1	0	0	3	0	0	0	0	0	0
2:45PM	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2:50PM	1	0	1	0	0	0	0	0	0	4	0	0	1	1	0	0
2:55PM	0	0	0	0	2	1	1	0	0	7	0	0	0	0	0	0
3:00PM	0	0	0	0	1	0	1	0	0	4	0	0	0	0	0	0
3:05PM	0	1	2	0	1	2	0	0	0	11	0	0	0	0	0	0
3:10PM	0	0	0	0	1	0	1	0	0	11	0	0	0	3	0	0
3:15PM	2	0	0	0	0	0	1	0	0	10	0	0	2	3	0	0
3:20PM	3	0	1	0	1	0	5	0	0	7	0	0	1	5	0	0
3:25PM	0	0	5	0	5	5	9	0	0	7	7	0	9	11	0	0
3:30PM	4	0	5	0	3	7	9	0	0	2	5	0	13	19	0	0
3:35PM	1	0	0	0	2	1	2	0	0	5	3	0	3	7	0	0
3:40PM	0	0	3	0	1	3	5	0	0	10	2	0	0	2	0	0
3:45PM	1	0	0	0	2	0	6	0	0	4	4	0	0	4	0	0
3:50PM	0	0	1	0	0	0	3	0	0	6	0	0	0	2	0	0
3:55PM	0	0	1	0	0	0	1	0	0	4	0	0	0	1	0	0

-

KEY DATA NETMOFKK				
Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
2:00PM	0	0	1	0
2:05PM	0	0	0	0
2:10PM	0	0	0	0
2:15PM	0	0	1	0
2:20PM	0	0	0	0
2:25PM	0	0	1	0
2:30PM	0	0	0	0
2:35PM	0	0	0	0
2:40PM	0	0	0	0
2:45PM	1	0	0	0
2:50PM	0	0	0	0
2:55PM	0	0	0	0
3:00PM	0	0	1	0
3:05PM	2	0	5	3
3:10PM	0	1	4	1
3:15PM	2	3	5	10
3:20PM	1	7	16	16
3:25PM	5	10	65	1
3:30PM	5	6	29	1
3:35PM	9	7	14	1
3:40PM	0	1	2	0
3:45PM	0	0	4	0
3:50PM	0	33	0	0
3:55PM	0	2	0	1

KEY DATA NETWOFIK
Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

NBLeft	NBThr	NBRight	SBLeft	SBThru	SBRight	EBLeft	EBThru	EBRight	WBLeft	WBThru	WBRight	NBEntering	SBEntering	EBEntering	WBEntering	NBLeaving	SBLeaving	EBLeaving	WBLeaving
0.0\%		0.0\%	0.0\%	0.0\%	0.0\%	0.0	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

PEAK-HOUR VOLUMES- PEDESTRIANS
$\begin{array}{rrrr}\text { North } & \text { South } & \text { East } & \text { West } \\ 0 & 12 & 2 & 3\end{array}$
PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight

All Vehicle Volumes																	Total
	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
4:00PM	0	0	0	0	0	2	2	0	0	3	0	0	0	1	0	0	8
4:05PM	0	0	0	0	0	0	2	0	0	1	0	0	1	2	0	0	6
4:10PM	0	0	0	0	0	0	1	0	0	3	1	0	0	2	0	0	7
4:15PM	1	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	4
4:20PM	1	0	0	0	1	0	1	0	0	5	1	0	0	1	0	0	10
4:25PM	0	0	0	0	1	1	2	0	0	4	0	0	0	1	0	0	9
4:30PM	0	0	1	0	1	0	3	0	0	8	0	0	0	3	0	0	16
4:35PM	0	0	1	0	0	0	2	0	0	4	0	0	0	1	0	0	8
4:40PM	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	0	4
4:45PM	0	0	2	0	2	0	1	0	0	5	0	0	0	0	0	0	10
4:50PM	0	0	0	0	0	0	3	0	0	5	0	0	0	0	0	0	8
4:55PM	0	0	0	0	2	1	3	0	0	2	0	0	0	3	0	0	11
5:00PM	0	0	0	0	2	0	3	0	0	6	0	0	0	2	0	0	13
5:05PM	0	0	0	0	1	1	4	0	0	3	1	0	0	3	0	0	13
5:10PM	0	0	0	0	0	0	4	0	0	4	0	0	0	3	0	0	11
5:15PM	0	0	1	0	0	1	3	0	0	6	0	0	0	5	1	0	17
5:20PM	0	0	1	0	0	0	2	0	0	4	0	0	1	4	0	0	12
5:25PM	1	0	1	0	0	0	2	0	0	7	0	0	0	8	0	0	19
5:30PM	0	0	0	0	1	2	6	0	0	3	0	0	1	6	0	0	19
5:35PM	0	0	1	0	1	0	2	0	0	4	0	0	0	1	0	0	9
5:40PM	0	0	1	0	3	1	9	0	0	8	1	0	1	5	0	0	29
5:45PM	1	0	0	0	1	0	7	0	1	5	0	0	0	6	0	0	21
5:50PM	0	0	1	0	3	0	5	0	0	5	0	0	0	4	0	0	18
5:55PM	1	0	1	0	4	1	8	0	1	10	0	0	0	10	0	0	36

KEY DATA NETWOFIK

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
4:00PM	0	0	0	0	0	2	2	0	0	3	0	0	0	1	0	0
4:05PM	0	0	0	0	0	0) 2	0	0	1	0	0	1	2	0	0
4:10PM	0	0	0	0	0	0	1	0	0	3	1	0	0	1	0	0
4:15PM	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
4:20PM	1	0	0	0	1	0	1	0	0	5	1	0	0	1	0	0
4:25PM	0	0	0	0	1	1	2	0	0	4	0	0	0	1	0	0
4:30PM	0	0	1	0	1	0	3	0	0	8	0	0	0	3	0	0
4:35PM	0	0	1	0	0	0	2	0	0	3	0	0	0	1	0	0
4:40PM	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	0
4:45PM	0	0	2	0	2	0	1	0	0	5	5	0	0	0	0	0
4:50PM	0	0	0	0	0	0	3	0	0	5	0	0	0	0	0	0
4:55PM	0	0	0	0	2	1	13	0	0	2	0	0	0	2	0	0
5:00PM	0	0	0	0	2	0	3	0	0	6	0	0	0	2	0	0
5:05PM	0	0	0	0	1	1	4	0	0	3	1	0	0	3	0	0
5:10PM	0	0	0	0	0	0	- 4	0	0	4	0	0	0	3	0	0
5:15PM	0	0	1	0	0	1	3	0	0	6	0	0	0	5	1	0
5:20PM	0	0	1	0	0	0	- 2	0	0	4	0	0	1	4	0	0
5:25PM	1	0	1	0	0	0	2	0	0	7	0	0	0	8	0	0
5:30PM	0	0	0	0	1	2	6	0	0	3	0	0	1	6	0	0
5:35PM	0	0	1	0	1	0	2	0	0	4	0	0	0	1	0	0
5:40PM	0	0	1	0	3	1	9	0	0	8	1	0	1	5	0	0
5:45PM	1	0	0	0	1	0) 7	0	1	5	5	0	0	6	0	0
5:50PM	0	0	1	0	3	0	5	0	0	5	0	0	0	4	0	0
5:55PM	1	0	1	0	4	1	8	0	1	10	0	0	0	10	0	0

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Other Vehicles | | | |
| Northbound | Southbound | Eastbound | Westbound | |
| Northbound Approach | Southbound Approach | Eastbound Approach | Westbound Approach | |

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
4:00PM	0	0	0	3
4:05PM	57	14	0	4
4:10PM	7	1	0	1
4:15PM	0	1	0	0
4:20PM	1	0	0	0
4:25PM	0	0	0	0
4:30PM	0	0	0	0
4:35PM	0	1	0	0
4:40PM	0	3	0	0
4:45PM	0	1	0	0
4:50PM	0	0	0	0
4:55PM	0	1	0	0
5:00PM	0	4	0	0
5:05PM	0	3	0	0
5:10PM	0	1	0	0
5:15PM	0	0	0	0
5:20PM	0	0	0	0
5:25PM	0	0	0	0
5:30PM	0	0	1	0
5:35PM	0	0	0	0
5:40PM	0	1	0	2
5:45PM	0	3	0	1
5:50PM	0	0	0	0
5:55PM	0	0	1	0

Data Provided by K-D.N. .com $503-594-4224$

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound			
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach			
Time	Left	Thru	Right	U-Turn												
7:00AM					0		0	0	2	0		0		0	0	0
7:05AM					0		2	0	2	1		0		0	0	0
7:10AM					0		0	0	3	1		0		1	0	0
7:15AM					0		0	0	3	0		0		0	1	0
7:20AM					1		1	0	5	0		0		0	0	0
7:25AM					0		0	0	7	1		0		1	3	1
7:30AM					1		0	0	5	2		0		1	2	0
7:35AM					2		2	0	10	4		0		0	1	0
7:40AM					0		1	0	8	4		0		1	4	0
7:45AM					0		1	0	6	7		0		0	1	0
7:50AM					1		1	0	14	10		0		3	9	0
7:55AM					2		1	0	11	12		0		1	4	0
8:00AM					2		1	0	19	10		0		3	9	0
8:05AM					5		2	0	11	11		0		5	10	0
8:10AM					6		1	0	15	14		0		7	9	0
8:15AM					6		3	0	7	18		0		1	10	0
8:20AM					2		8	0	11	6		0		3	6	0
8:25AM					1		0	0	11	7		0		0	4	0
8:30AM					1		1	0	3	2		0		0	1	0
8:35AM					0		1	0	3	0		0		1	1	0
8:40AM					0		2	0	0	1		0		0	0	0
8:45AM					0		1	0	2	1		0		0	0	0
8:50AM					0		0	0	1	1		0		0	0	0
8:55AM					0		1	0	1	0		0		0	0	0

Lights								Eastbound	Westbound
Northbound	Southbound	Eastbound Approach	Westbound Approach						
Northbound Approach	Southbound Approach								

Time	Left	Thru	Right	U-Turn												
7:00AM					0		0	0	0	0		0		0	0	0
7:05AM					0		0	0	0	0		0		0	0	0
7:10AM					0		0	0	0	0		0		0	0	0
7:15AM					0		0	0	0	0		0		0	0	0
7:20AM					0		1	0	0	0		0		0	0	0
7:25AM					0		0	0	0	0		0		0	0	0
7:30AM					1		0	0	0	0		0		0	0	0
7:35AM					0		0	0	0	0		0		0	0	0
7:40AM					0		0	0	0	0		0		0	0	0
7:45AM					0		1	0	0	0		0		0	0	0
7:50AM					0		0	0	0	0		0		0	0	0
7:55AM					0		0	0	1	0		0		0	0	0
8:00AM					0		0	0	2	1		0		0	1	0
8:05AM					3		0	0	1	0		0		0	1	0
8:10AM					5		1	0	0	0		0		0	3	0
8:15AM					5		0	0	0	0		0		0	0	0
8:20AM					0		0	0	2	1		0		0	1	0
8:25AM					1		0	0	0	0		0		0	0	0
8:30AM					0		0	0	0	0		0		0	0	0
8:35AM					0		0	0	0	0		0		0	0	0
8:40AM					0		0	0	0	0		0		0	0	0
8:45AM					0		0	0	1	0		0		0	0	0
8:50AM					0		0	0	0	0		0		0	0	0
8:55AM					0		1	0	0	0		0		0	0	0

KEY DATA NETWOFK				
Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
7:00AM		0	0	0
7:05AM		0	0	0
7:10AM		0	0	0
7:15AM		0	0	0
7:20AM		0	0	0
7:25AM		0	0	0
7:30AM		0	0	0
7:35AM		1	0	0
7:40AM		0	0	0
7:45AM		1	0	0
7:50AM		0	0	1
7:55AM		0	0	0
8:00AM		1	0	1
8:05AM		0	0	0
8:10AM		0	0	0
8:15AM		2	0	0
8:20AM		1	0	0
8:25AM		0	0	0
8:30AM		0	0	0
8:35AM		0	0	0
8:40AM		0	0	0
8:45AM		3	0	0
8:50AM		1	0	0
8:55AM		0	0	0

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES
 $\begin{array}{llllllllllllllllll} & 31.3 \% & 9.3 \% & 0.0 \% & 1.4 \% & 38.1 \% & 17.3 \% & 7.1 \% & 6.5 \%\end{array}$

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				Total
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn													
2:00PM					0		1	0	1	0		0		1	1	0	4
2:05PM					0		0	0	0	1		0		2	0	0	3
2:10PM					0		0	0	1	2		0		1	0	0	4
2:15PM					0		1	0	0	0		0		1	0	0	2
2:20PM					0		0	0	1	0		0		0	2	0	3
2:25PM					0		0	0	1	2		0		1	1	0	5
2:30PM					0		1	0	1	2		0		0	1	0	5
2:35PM					0		2	0	2	0		0		1	0	0	5
2:40PM					1		1	0	0	2		0		0	1	0	5
2:45PM					0		1	0	3	2		0		0	2	0	8
2:50PM					0		1	0	2	2		0		1	0	0	6
2:55PM					0		1	0	1	3		0		0	2	0	7
3:00PM					0		0	0	6	0		0		0	2	0	8
3:05PM					1		1	0	3	5		0		0	1	0	11
3:10PM					0		0	0	2	2		0		3	5	0	12
3:15PM					0		1	0	4	9		0		1	1	0	16
3:20PM					0		0	0	2	10		0		4	3	0	19
3:25PM					0		0	0	1	21		0		18	0	0	40
3:30PM					3		4	0	3	11		0		31	1	0	53
3:35PM					1		2	0	9	3		0		10	1	0	26
3:40PM					0		4	0	7	6		0		1	4	0	22
3:45PM					2		2	0	4	8		0		0	0	0	16
3:50PM					0		1	0	6	8		0		1	2	0	18
3:55PM					0		1	0	7	2		0		0	1	0	11

Lights								Eastbound	Westbound
Northbound	Southbound	Eastbound Approach	Westbound Approach						
Northbound Approach	Southbound Approach								

Time	Left	Thru	Right	U-Turn												
2:00PM					0		0	0	0	0		0		0	0	0
2:05PM					0		0	0	0	0		0		0	0	0
2:10PM					0		0	0	0	0		0		0	0	0
2:15PM					0		0	0	0	0		0		1	0	0
2:20PM					0		0	0	0	0		0		0	1	0
2:25PM					0		0	0	0	0		0		0	0	0
2:30PM					0		0	0	0	1		0		0	0	0
2:35PM					0		0	0	0	0		0		0	0	0
2:40PM					0		0	0	0	0		0		0	0	0
2:45PM					0		0	0	0	0		0		0	0	0
2:50PM					0		0	0	0	0		0		0	0	0
2:55PM					0		0	0	0	0		0		0	0	0
3:00PM					0		0	0	0	0		0		0	1	0
3:05PM					0		0	0	1	0		0		0	1	0
3:10PM					0		0	0	0	0		0		0	3	0
3:15PM					0		0	0	2	0		0		0	1	0
3:20PM					0		0	0	1	0		0		1	2	0
3:25PM					0		0	0	1	0		0		0	0	0
3:30PM					3		4	0	0	0		0		0	0	0
3:35PM					1		0	0	0	0		0		0	0	0
3:40PM					0		1	0	0	0		0		0	0	0
3:45PM					2		0	0	0	0		0		0	0	0
3:50PM					0		0	0	0	0		0		0	0	0
3:55PM					0		0	0	0	0		0		0	0	0

KEY DATA NETMOPRK				
Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
2:00PM		0	0	0
2:05PM		0	0	0
2:10PM		1	0	0
2:15PM		0	0	0
2:20PM		1	0	0
2:25PM		1	0	0
2:30PM		0	0	0
2:35PM		0	0	0
2:40PM		2	0	0
2:45PM		0	0	0
2:50PM		0	0	1
2:55PM		1	0	0
3:00PM		0	0	0
3:05PM		0	0	0
3:10PM		1	0	0
3:15PM		1	1	0
3:20PM		5	1	2
3:25PM		11	1	1
3:30PM		9	0	1
3:35PM		2	0	0
3:40PM		4	0	1
3:45PM		0	0	1
3:50PM		0	0	0
3:55PM		2	0	0

Data Provided by K-D-N. com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn	Total												
4:00PM					0		2	0	4	2		0		2	3	0	13
4:05PM					0		0	0	5	3		0		1	0	0	9
4:10PM					1		2	0	2	2		0		0	1	0	8
4:15PM					0		4	0	1	4		0		0	1	0	10
4:20PM					0		0	0	4	4		0		2	0	0	10
4:25PM					0		1	0	1	2		0		1	1	0	6
4:30PM					0		0	0	1	2		0		2	0	0	5
4:35PM					1		1	0	2	3		0		3	0	0	10
4:40PM					0		0	0	2	2		0		0	0	0	4
4:45PM					0		2	0	4	0		0		1	0	0	7
4:50PM					1		1	0	0	4		0		1	1	0	8
4:55PM					0		1	0	6	2		0		0	2	0	11
5:00PM					0		1	0	4	2		0		2	2	0	11
5:05PM					1		2	0	1	1		0		1	2	0	8
5:10PM					2		3	0	0	0		0		2	0	0	7
5:15PM					0		2	0	5	7		0		2	0	0	16
5:20PM					0		0	0	2	3		0		2	1	0	8
5:25PM					0		1	0	2	4		0		0	1	0	8
5:30PM					1		4	0	4	3		0		2	0	0	14
5:35PM					0		6	0	3	8		0		1	0	0	18
5:40PM					1		6	0	4	8		0		4	1	0	24
5:45PM					1		2	0	4	5		0		4	2	0	18
5:50PM					1		2	0	2	1		0		1	0	0	7
5:55PM					2		10	0	0	3		0		2	0	0	17

Lights								Eastbound	Westbound
Northbound	Southbound	Eastbound Approach	Westbound Approach						
Northbound Approach	Southbound Approach								

Time	Left	Thru	Right	U-Turn												
4:00PM					0		0	0	0	0		0		0	0	0
4:05PM					0		0	0	0	0		0		0	0	0
4:10PM					0		0	0	0	0		0		0	0	0
4:15PM					0		0	0	0	0		0		0	0	0
4:20PM					0		0	0	0	0		0		0	0	0
4:25PM					0		0	0	0	0		0		0	0	0
4:30PM					0		0	0	0	0		0		0	0	0
4:35PM					1		0	0	0	0		0		0	0	0
4:40PM					0		0	0	0	0		0		0	0	0
4:45PM					0		0	0	0	0		0		0	0	0
4:50PM					0		0	0	0	0		0		0	0	0
4:55PM					0		0	0	0	0		0		0	0	0
5:00PM					0		0	0	0	0		0		0	0	0
5:05PM					0		0	0	0	0		0		0	0	0
5:10PM					1		1	0	0	0		0		0	0	0
5:15PM					0		0	0	0	0		0		0	0	0
5:20PM					0		0	0	0	0		0		0	0	0
5:25PM					0		0	0	0	0		0		0	0	0
5:30PM					0		0	0	0	0		0		0	0	0
5:35PM					0		0	0	0	0		0		0	0	0
5:40PM					0		0	0	0	0		0		0	0	0
5:45PM					0		0	0	0	0		0		0	0	0
5:50PM					0		0	0	0	0		0		0	0	0
5:55PM					0		0	0	0	0		0		0	0	0

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
4:00PM		0	0	0
4:05PM		3	0	0
4:10PM		1	0	0
4:15PM		1	0	0
4:20PM		1	0	0
4:25PM		0	0	0
4:30PM		0	0	0
4:35PM		1	0	0
4:40PM		5	0	0
4:45PM		0	0	0
4:50PM		0	0	0
4:55PM		6	0	0
5:00PM		20	0	1
5:05PM		14	0	0
5:10PM		5	0	0
5:15PM		0	0	0
5:20PM		0	0	0
5:25PM		1	0	0
5:30PM		2	0	0
5:35PM		1	0	0
5:40PM		0	0	0
5:45PM		7	0	0
5:50PM		2	0	0
5:55PM		4	1	0

Data Provided by K-D.N.com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound			
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach			
Time	Left	Thru	Right	U-Turn												
7:00AM					0		0	0	0	0		0		0	0	0
7:05AM					0		0	0	1	0		0		0	1	0
7:10AM					0		0	0	0	0		0		0	0	0
7:15AM					0		0	0	0	0		0		0	2	0
7:20AM					0		0	0	0	1		0		0	0	0
7:25AM					0		0	0	0	1		0		1	0	0
7:30AM					0		0	0	0	2		0		4	0	0
7:35AM					0		0	0	1	3		0		3	1	0
7:40AM					0		0	0	1	6		0		4	2	0
7:45AM					0		0	0	2	4		0		9	3	0
7:50AM					0		0	0	1	11		0		4	1	0
7:55AM					0		0	0	4	7		0		8	7	0
8:00AM					3		0	0	2	9		0		10	18	0
8:05AM					0		1	0	2	4		0		10	7	0
8:10AM					3		1	0	6	13		0		12	18	0
8:15AM					1		0	0	6	15		0		10	12	0
8:20AM					0		1	0	0	8		0		8	4	0
8:25AM					0		0	0	2	3		0		4	0	0
8:30AM					0		0	0	0	1		0		0	1	0
8:35AM					0		0	0	0	1		0		2	0	0
8:40AM					0		0	0	0	1		0		2	0	0
8:45AM					0		0	0	0	0		0		2	0	0
8:50AM					0		0	0	0	3		0		2	0	0
8:55AM					0		0	0	0	2		0		0	0	0

Lights			
Northbound	Southbound	Eastbound	Westbound
Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach

Time	Left	Thru	Right	U-Turn												
7:00AM					0		0	0	0	0		0		0	0	0
7:05AM					0		0	0	0	0		0		0	0	0
7:10AM					0		0	0	0	0		0		0	0	0
7:15AM					0		0	0	0	0		0		0	0	0
7:20AM					0		0	0	0	0		0		0	0	0
7:25AM					0		0	0	0	0		0		0	0	0
7:30AM					0		0	0	0	0		0		0	0	0
7:35AM					0		0	0	0	0		0		0	0	0
7:40AM					0		0	0	0	0		0		0	0	0
7:45AM					0		0	0	0	0		0		0	0	0
7:50AM					0		0	0	0	1		0		0	0	0
7:55AM					0		0	0	0	0		0		0	0	0
8:00AM					0		0	0	0	3		0		1	0	0
8:05AM					0		0	0	0	2		0		0	0	0
8:10AM					0		0	0	0	4		0		2	0	0
8:15AM					0		0	0	1	4		0		1	0	0
8:20AM					0		0	0	0	1		0		2	0	0
8:25AM					0		0	0	0	1		0		0	0	0
8:30AM					0		0	0	0	0		0		0	0	0
8:35AM					0		0	0	0	0		0		0	0	0
8:40AM					0		0	0	0	0		0		0	0	0
8:45AM					0		0	0	0	0		0		0	0	0
8:50AM					0		0	0	0	0		0		0	0	0
8:55AM					0		0	0	0	0		0		0	0	0

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
7:00AM		0	0	0
7:05AM		0	0	0
7:10AM		0	0	0
7:15AM		0	0	0
7:20AM		0	0	0
7:25AM		0	0	0
7:30AM		2	0	0
7:35AM		0	1	1
7:40AM		0	0	0
7:45AM		1	0	0
7:50AM		1	0	0
7:55AM		0	0	0
8:00AM		0	0	0
8:05AM		0	0	0
8:10AM		1	0	0
8:15AM		3	0	2
8:20AM		2	0	0
8:25AM		0	0	0
8:30AM		1	0	0
8:35AM		0	0	0
8:40AM		0	0	0
8:45AM		0	0	0
8:50AM		0	0	0
8:55AM		0	0	0

Data Provided by K-D-N. com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS
North South East West

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn	Total												
2:00PM					0		4	0	0	1		0		0	1	0	6
2:05PM					0		0	0	0	1		0		1	0	0	2
2:10PM					0		0	0	0	1		0		0	0	0	1
2:15PM					0		0	0	0	1		0		2	0	0	3
2:20PM					1		0	0	0	1		0		0	0	0	2
2:25PM					0		0	0	0	2		0		2	0	0	4
2:30PM					0		0	0	0	2		0		0	0	0	2
2:35PM					0		0	0	1	1		0		1	0	0	3
2:40PM					0		0	0	1	1		0		1	0	0	3
2:45PM					0		0	0	0	0		0		1	0	0	1
2:50PM					0		0	0	0	2		0		4	0	0	6
2:55PM					0		0	0	0	2		0		0	0	0	2
3:00PM					0		0	0	1	1		0		1	0	0	3
3:05PM					0		1	0	2	2		0		1	2	0	8
3:10PM					1		1	0	6	4		0		4	4	0	20
3:15PM					3		1	0	5	1		0		7	5	0	22
3:20PM					1		3	0	4	5		0		9	4	0	26
3:25PM					15		28	0	5	21		0		1	1	0	71
3:30PM					17		22	0	2	11		0		4	2	0	58
3:35PM					1		2	0	0	6		0		3	0	0	12
3:40PM					0		0	0	4	3		0		0	1	0	8
3:45PM					0		1	0	1	3		0		2	0	0	7
3:50PM					0		2	0	1	5		0		1	0	0	9
3:55PM					1		0	0	0	1		0		5	1	0	8

Lights								Eastbound	Westbound
Northbound	Southbound	Eastbound Approach	Westbound Approach						
Northbound Approach	Southbound Approach								

Time	Left	Thru	Right	U-Turn												
2:00PM					0		0	0	0	0		0		0	0	0
2:05PM					0		0	0	0	0		0		0	0	0
2:10PM					0		0	0	0	0		0		0	0	0
2:15PM					0		0	0	0	0		0		1	0	0
2:20PM					0		0	0	0	0		0		0	0	0
2:25PM					0		0	0	0	0		0		0	0	0
2:30PM					0		0	0	0	0		0		0	0	0
2:35PM					0		0	0	0	1		0		0	0	0
2:40PM					0		0	0	0	0		0		0	0	0
2:45PM					0		0	0	0	0		0		0	0	0
2:50PM					0		0	0	0	0		0		0	0	0
2:55PM					0		0	0	0	0		0		0	0	0
3:00PM					0		0	0	0	0		0		1	0	0
3:05PM					0		0	0	0	0		0		1	0	0
3:10PM					0		0	0	0	0		0		2	0	0
3:15PM					0		0	0	0	0		0		2	0	0
3:20PM					0		0	0	0	0		0		2	0	0
3:25PM					0		0	0	0	0		0		0	0	0
3:30PM					0		0	0	0	4		0		1	0	0
3:35PM					0		0	0	0	0		0		0	0	0
3:40PM					0		0	0	0	0		0		0	0	0
3:45PM					0		0	0	0	0		0		0	0	0
3:50PM					0		2	0	0	0		0		0	0	0
3:55PM					0		0	0	0	0		0		0	0	0

KEY DATA NETWOFK				
Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
2:00PM		0	0	0
2:05PM		0	0	0
2:10PM		0	0	2
2:15PM		0	0	0
2:20PM		0	0	0
2:25PM		0	0	0
2:30PM		0	0	0
2:35PM		0	0	0
2:40PM		0	0	0
2:45PM		0	0	0
2:50PM		0	0	0
2:55PM		0	0	0
3:00PM		0	0	0
3:05PM		0	1	0
3:10PM		0	0	0
3:15PM		0	0	0
3:20PM		0	0	0
3:25PM		0	0	0
3:30PM		3	0	0
3:35PM		2	0	0
3:40PM		0	0	0
3:45PM		0	0	0
3:50PM		0	0	0
3:55PM		0	0	0

Data Provided by K-D-N.com 503-594-4224

PERCENT HEAVY VEHICLES

PEAK-HOUR VOLUMES- PEDESTRIANS

North	South	East	West
	0	1	0

PEAK-HOUR VOLUMES- BICYCLES
NBLeft NBThru NBRight SBLeft SBThru SBRight EBLeft EBThru EBRight WBLeft WBThru WBRight
All Vehicle Volumes

	Northbound				Southbound				Eastbound				Westbound				
Start	Northbound Approach				Southbound Approach				Eastbound Approach				Westbound Approach				
Time	Left	Thru	Right	U-Turn	Total												
4:00PM					0		0	0	0	1		0		0	0	0	1
4:05PM					0		0	0	0	0		0		1	1	0	2
4:10PM					0		0	0	1	1		0		0	1	0	3
4:15PM					0		0	0	1	0		0		1	1	0	3
4:20PM					0		0	0	0	2		0		2	0	0	4
4:25PM					0		0	0	0	1		0		3	0	0	4
4:30PM					2		0	0	2	2		0		6	1	0	13
4:35PM					1		1	0	0	1		0		2	1	0	6
4:40PM					2		0	0	0	0		0		1	2	0	5
4:45PM					1		0	0	0	4		0		2	2	0	9
4:50PM					2		0	0	0	1		0		1	2	0	6
4:55PM					0		0	0	0	1		0		3	2	0	6
5:00PM					0		1	0	0	4		0		2	0	0	7
5:05PM					1		2	0	1	0		0		2	0	0	6
5:10PM					0		0	0	3	0		0		3	1	0	7
5:15PM					1		2	0	0	2		0		1	2	0	8
5:20PM					1		0	0	0	1		0		2	1	0	5
5:25PM					1		2	0	3	0		0		4	3	0	13
5:30PM					0		3	0	0	3		0		1	0	0	7
5:35PM					1		0	0	2	1		0		1	3	0	8
5:40PM					3		1	0	2	1		0		4	2	0	13
5:45PM					1		3	0	2	1		0		1	3	0	11
5:50PM					0		1	0	2	5		0		1	0	0	9
5:55PM					3		2	0	3	6		0		1	2	0	17

Lights								Eastbound	Westbound
Northbound	Southbound	Eastbound Approach	Westbound Approach						
Northbound Approach	Southbound Approach								

Time	Left	Thru	Right	U-Turn												
4:00PM					0		0	0	0	0		0		0	0	0
4:05PM					0		0	0	0	0		0		0	1	0
4:10PM					0		0	0	0	0		0		0	0	0
4:15PM					0		0	0	1	0		0		0	0	0
4:20PM					0		0	0	0	0		0		0	0	0
4:25PM					0		0	0	0	0		0		0	0	0
4:30PM					0		0	0	0	0		0		0	0	0
4:35PM					0		0	0	0	1		0		0	0	0
4:40PM					0		0	0	0	0		0		0	0	0
4:45PM					0		0	0	0	1		0		0	0	0
4:50PM					0		0	0	0	0		0		0	0	0
4:55PM					0		0	0	0	1		0		0	0	0
5:00PM					0		0	0	0	0		0		0	0	0
5:05PM					0		0	0	0	0		0		0	0	0
5:10PM					0		0	0	0	0		0		0	0	0
5:15PM					0		0	0	0	0		0		0	0	0
5:20PM					0		0	0	0	0		0		0	0	0
5:25PM					0		0	0	0	0		0		0	0	0
5:30PM					0		0	0	0	0		0		0	0	0
5:35PM					0		0	0	0	0		0		0	1	0
5:40PM					0		0	0	0	0		0		0	0	0
5:45PM					0		0	0	0	0		0		0	0	0
5:50PM					0		0	0	0	1		0		0	0	0
5:55PM					0		0	0	0	0		0		0	0	0

Pedestrians				
	Northbound	Southbound	Eastbound	Westbound
Start	Northbound Approach	Southbound Approach	Eastbound Approach	Westbound Approach
Time	North	South	East	West
4:00PM		0	0	0
4:05PM		2	0	0
4:10PM		0	0	0
4:15PM		0	0	0
4:20PM		0	0	0
4:25PM		3	0	0
4:30PM		0	0	0
4:35PM		0	0	0
4:40PM		0	0	0
4:45PM		0	0	0
4:50PM		0	0	0
4:55PM		1	0	0
5:00PM		0	0	0
5:05PM		0	0	0
5:10PM		0	0	0
5:15PM		0	1	0
5:20PM		0	0	0
5:25PM		0	0	0
5:30PM		0	0	0
5:35PM		0	0	0
5:40PM		0	0	0
5:45PM		0	0	0
5:50PM		0	0	0
5:55PM		0	0	0

TRIP GENERATION CALCULATIONS

Land Use: High School
Land Use Code: 530
Variable: Students
Variable Value: 100

AM PEAK HOUR

Trip Rate: 0.43

	Enter	Exit	Total
Directional Distribution	68%	32%	
Trip Ends	$\mathbf{2 9}$	$\mathbf{1 4}$	$\mathbf{4 3}$

WEEKDAY
Trip Rate: 1.71

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{8 6}$	$\mathbf{8 6}$	$\mathbf{1 7 2}$

PM PEAK HOUR
Trip Rate: 0.13

	Enter	Exit	Total
Directional Distribution	47%	53%	
Trip Ends	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{1 3}$

PM PEAK HOUR OF GENERATOR

Trip Rate: 0.29

	Enter	Exit	Total
Directional Distribution	33%	67%	
Trip Ends	$\mathbf{1 0}$	$\mathbf{1 9}$	$\mathbf{2 9}$

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

EVANS ST at 19TH ST, City of McMinnville, Yamhill County, 01/01/2010 to 12/31/2014

COLLISION TYPE	$\begin{aligned} & \text { FATAL } \\ & \text { CRASHES } \end{aligned}$		PROPERTY DAMAGE ONLY	$\begin{aligned} & \text { TOTAL } \\ & \text { CRASHES } \end{aligned}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{gathered} \text { WET } \\ \text { SURF } \end{gathered}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTER- SECTION related	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
Angle	0	1	1	2	0	1	0	0	2	1	1	2	0	0
REAR-END	0	0	1	1	0	0	0	0	1	1	0	1	0	0
turning movements	0	1	0	1	0	2	0	0	1	1	0	1	0	0
Year 2014 total	0	2	2	4	0	3	0	0	4	3	1	4	0	0
YEAR: 2010														
Angle	0	0	1	1	0	0	0	1	0	1	0	1	0	0
Year 2010 total	0	0	1	1	0	0	0	1	0	1	0	1	0	0
Final total	0	2	3	5	0	3	0	1	4	4	1	5	0	0

[^3] the responsibility of the individual driver the Crast Analysis and Reporting Unit caal
damage only crashes being eligible for inclusion in the Statewide Crash Data File.
CRASH SUMMARIES BY YEAR BY COLLISION TYPE

EVANS ST at 17TH ST, City of McMinnville, Yamhill County, 01/01/2010 to 12/31/2014

COLLISION TYPE	fatal CRASHES		PROPERTY DAMAGE ONLY	total CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTERSection ReLATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
Angle	0	1	2	3	0	1	0	2	1	2	1	3	0	0
YEAR 2014 total	0	1	2	3	0	1	0	2	1	2	1	3	0	0
YEAR: 2013														
ANGLE	0	1	0	1	0	2	0	1	0	1	0	1	0	0
turning movements	0	0	1	1	0	0	0	0	1	1	0	1	0	0
Year 2013 total	0	1	1	2	0	2	0	1	1	2	0	2	0	0
final total	0	2	3	5	0	3	0	3	2	4	1	5	0	0

oregon.. department of transportation - transportation development division
TrANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT
urban non-System crash listing

CDS380
09/28/2016
City of mcminnville, yamhill county

S D

P R S W INT-TYP

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

EVANS ST at 15TH ST, City of McMinnville, Yamhill County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTERSECTION RELATED	OFFROAD
YEAR: 2013														
NON-COLLISION	0	1	0	1	0	1	0	1	0	1	0	1	0	0
Year 2013 total	0	1	0	1	0	1	0	1	0	1	0	1	0	0
FINAL TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0

CDS380
09/28/2016
City of mcminnville, yamhill county

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

17TH ST at HEMBREE ST, City of McMinnville, Yamhill County, 01/01/2010 to 12/31/2014

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.
CRASH SUMMARIES BY YEAR BY COLLISION TYPE

15TH ST at GALLOWAY ST, City of McMinnville, Yamhill County, 01/01/2010 to 12/31/2014

COLLISION TYPE	$\begin{aligned} & \text { FATAL } \\ & \text { CRASHES } \end{aligned}$	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \\ & \text { RELATED } \end{aligned}$	OFFROAD
YEAR: 2012														
backing	0	0	1	1	0	0	0	1	0	1	0	1	0	0
Year 2012 total	0	0	1	1	0	0	0	1	0	1	0	1	0	0
FINAL total	0	0	1	1	0	0	0	1	0	1	0	1	0	0

09/28/2016
City of mcminnville, yamhill county

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

15 TH ST at IRVINE ST, City of McMinnville, Yamhill County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	$\begin{aligned} & \text { FATAL } \\ & \text { CRASHES } \end{aligned}$	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \end{aligned}$	PEOPLE INJURED	TRUCKS	$\begin{array}{r} \text { DRY } \\ \text { SURF } \end{array}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	SECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$

LEVEL OF SERVICE

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C . Urban streets and signalized intersections are typically designed for level of service D. Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.

Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.

Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.

Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.

Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.

Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

LEVEL OF SERVICE CRITERIA
FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

Intersection	
Intersection Delay, s/veh 18.4	
Intersection LOS	C

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\&				*				\&	
Traffic Vol, veh/h	0	1	94	45	0	26	74	59	0	30	131	23
Future Vol, veh/h	0	1	94	45	0	26	74	59	0	30	131	23
Peak Hour Factor	0.92	0.68	0.68	0.68	0.92	0.68	0.68	0.68	0.92	0.68	0.68	0.68
Heavy Vehicles, \%	2	11	11	11	2	4	4	4	2	6	6	6
Mvmt Flow	0	1	138	66	0	38	109	87	0	44	193	34
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		13.9				14.3				15.2		
HCM LOS		B				B				C		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	16%	1%	16%	17%
Vol Thru, \%	71%	67%	47%	82%
Vol Right, \%	12%	32%	37%	1%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	184	140	159	302
LT Vol	30	1	26	50
Through Vol	131	94	74	248
RT Vol	23	45	59	4
Lane Flow Rate	271	206	234	444
Geometry Grp	1	1	1	1
Degree of Util (X)	0.478	0.383	0.423	0.742
Departure Headway (Hd)	6.36	6.695	6.509	6.015
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	566	535	552	600
Service Time	4.423	4.763	4.574	4.069
HCM Lane V/C Ratio	0.479	0.385	0.424	0.74
HCM Control Delay	15.2	13.9	14.3	24.5
HCM Lane LOS	C	B	B	C
HCM 95th-tile Q	2.6	1.8	2.1	6.5

Movement	SBU	SBL	SBT	SBR
Lane Configurations			Φ	
Traffic Vol, veh/h	0	50	248	4
Future Vol, veh/h	0	50	248	4
Peak Hour Factor	0.92	0.68	0.68	0.68
Heavy Vehicles, \%	2	2	2	2
Mvmt tlow	0	74	365	6
Number of Lanes	0	0	1	0
Approach	SB			
Opposing Approach	NB			
Opposing Lanes	1			
Conflicting Approach Left	WB			
Conflicting Lanes Left	1			
Conflicting Approach Right	EB			
Conflicting Lanes Right	1			
HCM Control Delay	24.5			
HCM LOS	C			

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			*			\&			\&	
Traffic Vol, veh/h	6	22	14	16	0	20	8	158	15	115	196	11
Future Vol, veh/h	6	22	14	16	0	20	8	158	15	115	196	11
Conflicting Peds, \#/hr	20	0	8	8	0	20	27	0	0	0	0	27
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-		None	-	-	None	-	-	None
Storage Length	-	-	-	-		-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-		0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, \%	1	1	1	3	3	3	7	7	7	2	2	2
Mvmt Flow	9	32	21	24	0	29	12	232	22	169	288	16

Intersection	
Intersection Delay, s/veh	12.2
Intersection LOS	B

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			*				\&				\&	
Traffic Vol, veh/h	0	1	1	2	0	87	1	92	0	9	86	164
Future Vol, veh/h	0	1	1	2	0	87	1	92	0	9	86	164
Peak Hour Factor	0.92	0.72	0.72	0.72	0.92	0.72	0.72	0.72	0.92	0.72	0.72	0.72
Heavy Vehicles, \%	2	1	1	1	2	5	5	5	2	4	4	4
Mvmt Flow	0	1	1	3	0	121	1	128	0	13	119	228
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		9				11.8				12.2		
HCM LOS		A				B				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	3%	25%	48%	32%
Vol Thru, \%	33%	25%	1%	66%
Vol Right, \%	63%	50%	51%	2%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	259	4	180	229
LT Vol	9	1	87	73
Through Vol	86	1	1	151
RT Vol	164	2	92	5
Lane Flow Rate	360	6	250	318
Geometry Grp	1	1	1	1
Degree of Util (X)	0.481	0.009	0.378	0.459
Departure Headway (Hd)	4.809	5.847	5.44	5.195
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	755	610	660	693
Service Time	2.809	3.902	3.476	3.225
HCM Lane VIC Ratio	0.477	0.01	0.379	0.459
HCM Control Delay	12.2	9	11.8	12.6
HCM Lane LOS	B	A	B	B
HCM 95th-tile Q	2.6	0	1.8	2.4

Intersection
Intersection Delay, s/veh 9.8
Intersection LOS A

Movement EBU	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR
Lane Configurations	*				\uparrow		\uparrow	
Traffic Vol, veh/h 0	41	80	0	0	45	0	129	19
Future Vol, veh/h 0	41	80	0	0	45	0	129	19
Peak Hour Factor 0.92	0.52	0.52	0.92	0.52	0.52	0.92	0.52	0.52
Heavy Vehicles, \% 2	1	1	2	13	13	2	13	13
Mvmt Flow 0	79	154	0	0	87	0	248	37
Number of Lanes 0	1	0	0	0	1	0	1	0
Approach	EB				NB		SB	
Opposing Approach					SB		NB	
Opposing Lanes	0				1		1	
Conflicting Approach Left	SB				EB			
Conflicting Lanes Left	1				1		0	
Conflicting Approach Right	NB						EB	
Conflicting Lanes Right	1				0		1	
HCM Control Delay	9.3				8.7		10.5	
HCM LOS	A				A		B	

Lane	NBLn1 EBLn1 SBLn1		
Vol Left, \%	0%	34%	0%
Vol Thru, $\%$	100%	0%	87%
Vol Right, \%	0%	66%	13%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	45	121	148
LT Vol	0	41	0
Through Vol	45	0	129
RT Vol	0	80	19
Lane Flow Rate	87	233	285
Geometry Grp	1	1	1
Degree of Util (X)	0.12	0.29	0.371
Departure Headway (Hd)	5.001	4.481	4.692
Convergence, Y/N	Yes	Yes	Yes
Cap	714	800	766
Service Time	3.05	2.514	2.732
HCM Lane V/C Ratio	0.122	0.291	0.372
HCM Control Delay	8.7	9.3	10.5
HCM Lane LOS	A	A	B
HCM 95th-tile Q	0.4	1.2	1.7

5: NE Galloway St/MHS Access \& NE 15th St

Intersection												
Int Delay, s/veh 6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	0	158	68	5	35	0	17	0	20	24	38	124
Future Vol, veh/h	0	158	68	5	35	0	17	0	20	24	38	124
Conflicting Peds, \#/hr	3	0	6	6	0	3	55	0	148	148	0	55
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-		-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	-		0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	65	65	65	65	65	65	65	65	65	65	65	65
Heavy Vehicles, \%	2	2	2	3	3	3	3	3	3	4	4	4
Mvmt Flow	0	243	105	8	54	0	26	0	31	37	58	191

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	27	85	86	73	3	7
Future Vol, veh/h	27	85	86	73	3	7
Conflicting Peds, \#/hr	0	0	0	0	1	3
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	58	58	58	58	58	58
Heavy Vehicles, \%	15	15	4	4	1	1
Mvmt Flow	47	147	148	126	5	12

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 12.5 |
| Intersection LOS | B |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\&				\$				\&	
Traffic Vol, veh/h	0	14	72	36	0	27	98	53	0	33	188	27
Future Vol, veh/h	0	14	72	36	0	27	98	53	0	33	188	27
Peak Hour Factor	0.92	0.79	0.79	0.79	0.92	0.79	0.79	0.79	0.92	0.79	0.79	0.79
Heavy Vehicles, \%	2	5	5	5	2	7	7	7	2	5	5	5
Mvmt Flow	0	18	91	46	0	34	124	67	0	42	238	34
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		10.9				12				13.6		
HCM LOS		B				B				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	11%	15%	18%
Vol Thru, \%	76%	59%	55%	73%
Vol Right, \%	11%	30%	30%	8%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	248	122	178	203
LT Vol	33	14	27	37
Through Vol	188	72	98	149
RT Vol	27	36	53	17
Lane Flow Rate	314	154	225	257
Geometry Grp	1	1	1	1
Degree of Util (X)	0.479	0.251	0.36	0.4
Departure Headway (Hd)	5.497	5.851	5.745	5.597
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	653	610	622	640
Service Time	3.557	3.924	3.812	3.658
HCM Lane V/C Ratio	0.481	0.252	0.362	0.402
HCM Control Delay	13.6	10.9	12	12.4
HCM Lane LOS	B	B	B	B
HCM 95th-tile Q	2.6	1	1.6	1.9

Movement	SBU	SBL	SBT	SBR
Lane Configurations			\$	
Traffic Vol, veh/h	0	37	149	17
Future Vol, veh/h	0	37	149	17
Peak Hour Factor	0.92	0.79	0.79	0.79
Heavy Vehicles, \%	2	4	4	4
Mvmt Flow	0	47	189	22
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		12.4		
HCM LOS		B		

Intersection												
Int Delay, s/veh 2.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			\&			\ddagger	
Traffic Vol, veh/h	8	18	14	20	3	29	10	215	18	19	186	13
Future Vol, veh/h	8	18	14	20	3	29	10	215	18	19	186	13
Conflicting Peds, \#/hr	25	0	4	4	0	25	57	0	12	12	0	57
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-		-	-		-
Veh in Median Storage, \#	-	0	-		0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, \%	5	5	5	4	4	4	6	6	6	4	4	4
Mvmt Flow	10	23	18	25	4	37	13	272	23	24	235	16

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 10.5 |
| Intersection LOS | B |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			*				\&				\uparrow	
Traffic Vol, veh/h	0	4	2	11	0	58	2	59	0	6	176	67
Future Vol, veh/h	0	4	2	11	0	58	2	59	0	6	176	67
Peak Hour Factor	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78
Heavy Vehicles, \%	2	1	1	1	2	7	7	7	2	4	4	4
Mvmt Flow	0	5	3	14	0	74	3	76	0	8	226	86
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		8.4				9.8				10.8		
HCM LOS		A				A				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	2%	24%	49%	19%
Vol Thru, \%	71%	12%	2%	78%
Vol Right, \%	27%	65%	50%	3%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	249	17	119	217
LT Vol	6	4	58	41
Through Vol	176	2	2	169
RT Vol	67	11	59	7
Lane Flow Rate	319	22	153	278
Geometry Grp	1	1	1	1
Degree of Util (X)	0.407	0.031	0.22	0.371
Departure Headway (Hd)	4.595	5.181	5.203	4.803
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	779	682	683	746
Service Time	2.65	3.281	3.279	2.861
HCM Lane V/C Ratio	0.409	0.032	0.224	0.373
HCM Control Delay	10.8	8.4	9.8	10.7
HCM Lane LOS	B	A	A	B
HCM 95th-tile Q	2	0.1	0.8	1.7

Intersection
Intersection Delay, s/veh 7.7
Intersection LOS A

Movement EBU	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR
Lane Configurations	*				\uparrow		\uparrow	
Traffic Vol, veh/h 0	23	18	0	10	33	0	23	30
Future Vol, veh/h 0	23	18	0	10	33	0	23	30
Peak Hour Factor 0.92	0.57	0.57	0.92	0.57	0.57	0.92	0.57	0.57
Heavy Vehicles, \% 2	7	7	2	23	23	2	15	15
Mvmt Flow 0	40	32	0	18	58	0	40	53
Number of Lanes 0	1	0	0	0	1	0	1	0
Approach	EB			NB			SB	
Opposing Approach				SB			NB	
Opposing Lanes	0			1			1	
Conflicting Approach Left	SB			EB				
Conflicting Lanes Left	1			1			0	
Conflicting Approach Right	NB						EB	
Conflicting Lanes Right	1			0			1	
HCM Control Delay	7.6			8.1			7.5	
HCM LOS	A			A			A	

Lane	NBLn1 EBLn1 SBLn1		
Vol Left, \%	23%	56%	0%
Vol Thru, $\%$	77%	0%	43%
Vol Right, \%	0%	44%	57%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	43	41	53
LT Vol	10	23	0
Through Vol	33	0	23
RT Vol	0	18	30
Lane Flow Rate	75	72	93
Geometry Grp	1	1	1
Degree of Util (X)	0.095	0.083	0.103
Departure Headway (Hd)	4.536	4.157	3.999
Convergence, Y/N	Yes	Yes	Yes
Cap	785	849	888
Service Time	2.592	2.248	2.061
HCM Lane V/C Ratio	0.096	0.085	0.105
HCM Control Delay	8.1	7.6	7.5
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.3	0.3	0.3

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\ddagger		${ }^{1}$	F	
Traffic Vol, veh/h	0	89	20	29	61	0	11	0	17	19	19	46
Future Vol, veh/h	0	89	20	29	61	0	11	0	17	19	19	46
Conflicting Peds, \#/hr	24	0	35	35	0	24	33	0	145	145	0	33
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	50	50	50	50	50	50	50	50	50	50	50	50
Heavy Vehicles, \%	5	5	5	7	7	7	1	1	1	4	4	4
Mvmt Flow	0	178	40	58	122	0	22	0	34	38	38	92

Intersection						
Int Delay, s/veh	2.6					
Movement		EBL	EBT	WBT	WBR	SBL
Lane Configurations		-1	6		SBR	
Traffic Vol, veh/h	48	86	69	22	7	
Future Vol, veh/h	48	86	69	22	7	16
Conflicting Peds, \#/hr	0	0	0	0	3	16
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	52	52	52	52	52	52
Heavy Vehicles, \%	4	4	10	10	48	48
Mvmt Flow	92	165	133	42	13	31

Intersection						
Int Delay, s/veh	5.9					
Movement		EBL	EBT	WBT	WBR	SBL
Lane Configurations		\pm	1		SBR	
Traffic Vol, veh/h	31	64	33	19	38	61
Future Vol, veh/h	31	64	33	19	38	61
Conflicting Peds, \#/hr	0	0	0	0	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	40	40	40	40	40	40
Heavy Vehicles, $\%$	4	4	17	17	2	2
Mvmt Flow	78	160	83	48	95	153

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 11.7 |
| Intersection LOS | B |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\&				\$				\&	
Traffic Vol, veh/h	0	14	72	29	0	26	81	32	0	22	223	25
Future Vol, veh/h	0	14	72	29	0	26	81	32	0	22	223	25
Peak Hour Factor	0.92	0.85	0.85	0.85	0.92	0.85	0.85	0.85	0.92	0.85	0.85	0.85
Heavy Vehicles, \%	2	5	5	5	2	4	4	4	2	2	2	2
Mvmt Flow	0	16	85	34	0	31	95	38	0	26	262	29
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		10.4				10.7				12.6		
HCM LOS		B				B				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	8%	12%	19%	14%
Vol Thru, \%	83%	63%	58%	80%
Vol Right, \%	9%	25%	23%	6%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	270	115	139	237
LT Vol	22	14	26	32
Through Vol	223	72	81	190
RT Vol	25	29	32	15
Lane Flow Rate	318	135	164	279
Geometry Grp	1	1	1	1
Degree of Util (X)	0.458	0.216	0.258	0.41
Departure Headway (Hd)	5.192	5.737	5.689	5.29
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	692	624	630	680
Service Time	3.233	3.788	3.739	3.332
HCM Lane V/C Ratio	0.46	0.216	0.26	0.41
HCM Control Delay	12.6	10.4	10.7	12
HCM Lane LOS	B	B	B	B
HCM 95th-tile Q	2.4	0.8	1	2

Movement	SBU	SBL	SBT	SBR
Lane Configurations		\uparrow		
Traffic Vol, veh/h	0	32	190	15
Future Vol, veh/h	0	32	190	15
Peak Hour Factor	0.92	0.85	0.85	0.85
Heavy Vehicles, \%	2	3	3	3
Mvmt tlow	0	38	224	18
Number of Lanes	0	0	1	0
Approach	SB			
Opposing Approach	NB			
Opposing Lanes	1			
Conflicting Approach Left	WB			
Conflicting Lanes Left	1			
Conflicting Approach Right	EB			
Conflicting Lanes Right	1			
HCM Control Delay	12			
HCM LOS	B			

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\&			\&			\&	
Traffic Vol, veh/h	8	18	29	9	3	22	11	242	5	20	212	11
Future Vol, veh/h	8	18	29	9	3	22	11	242	5	20	212	11
Conflicting Peds, \#/hr	52	0	3	3	0	52	5	0	7	7	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	1	1	1	1	1	1	1	2	2	2
Mvmt Flow	8	19	30	9	3	23	11	252	5	21	221	11

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 9.6 |
| Intersection LOS | A |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\$				\&				\$	
Traffic Vol, veh/h	0	8	8	10	0	56	5	49	0	12	200	49
Future Vol, veh/h	0	8	8	10	0	56	5	49	0	12	200	49
Peak Hour Factor	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95
Heavy Vehicles, \%	2	1	1	1	2	1	1	1	2	1	1	1
Mvmt Flow	0	8	8	11	0	59	5	52	0	13	211	52
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		8.4				9				9.8		
HCM LOS		A				A				A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	5%	31%	51%	7%
Vol Thru, \%	77%	31%	5%	84%
Vol Right, \%	19%	38%	45%	9%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	261	26	110	248
LT Vol	12	8	56	18
Through Vol	200	8	5	208
RT Vol	49	10	49	22
Lane Flow Rate	275	27	116	261
Geometry Grp	1	1	1	1
Degree of Util (X)	0.341	0.039	0.16	0.329
Departure Headway (Hd)	4.463	5.113	4.979	4.539
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	802	695	717	791
Service Time	2.503	3.179	3.034	2.579
HCM Lane V/C Ratio	0.343	0.039	0.162	0.33
HCM Control Delay	9.8	8.4	9	9.8
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	1.5	0.1	0.6	1.4

Intersection
Intersection Delay, s/veh 7.2
Intersection LOS A

Movement EBU	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR
Lane Configurations	M				\uparrow		F	
Traffic Vol, veh/h 0	5	27	0	20	24	0	31	3
Future Vol, veh/h 0	5	27	0	20	24	0	31	3
Peak Hour Factor 0.92	0.76	0.76	0.92	0.76	0.76	0.92	0.76	0.76
Heavy Vehicles, \% 2	1	1	2	1	1	2	6	6
Mvmt Flow 0	7	36	0	26	32	0	41	4
Number of Lanes 0	1	0	0	0	1	0	1	0
Approach	EB			NB			SB	
Opposing Approach				SB			NB	
Opposing Lanes	0			1			1	
Conflicting Approach Left	SB			EB				
Conflicting Lanes Left	1			1			0	
Conflicting Approach Right	NB						EB	
Conflicting Lanes Right	1			0			1	
HCM Control Delay	6.8			7.4			7.3	
HCM LOS	A			A			A	

Lane	NBLn1 EBLn1 SBLn1		
Vol Left, \%	45%	16%	0%
Vol Thru, $\%$	55%	0%	91%
Vol Right, $\%$	0%	84%	9%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	44	32	34
LT Vol	20	5	0
Through Vol	24	0	31
RT Vol	0	27	3
Lane Flow Rate	58	42	45
Geometry Grp	1	1	1
Degree of Util (X)	0.066	0.042	0.051
Departure Headway (Hd)	4.115	3.618	4.065
Convergence, Y/N	Yes	Yes	Yes
Cap	872	982	881
Service Time	2.134	1.667	2.088
HCM Lane V/C Ratio	0.067	0.043	0.051
HCM Control Delay	7.4	6.8	7.3
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.2	0.1	0.2

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\$		${ }^{7}$	F	
Traffic Vol, veh/h	0	65	2	3	57	0	3	0	7	16	6	55
Future Vol, veh/h	0	65	2	3	57	0	3	0	7	16	6	55
Conflicting Peds, \#/hr	0	0	12	12	0	0	3	0	2	2	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-		None	-	-	None	-	-	None
Storage Length	-	-	-	-		-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	72	72	72	72	72	72	72	72	72	72	72	72
Heavy Vehicles, \%	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	0	90	3	4	79	0	4	0	10	22	8	76

Intersection						
Int Delay, s/veh	3.5					
Movement		EBL	EBT	WBT	WBR	SBL
Lane Configurations		\pm	1		SBR	
Traffic Vol, veh/h	18	24	23	17	12	17
Future Vol, veh/h	18	24	23	17	12	17
Conflicting Peds, \#/hr	0	0	0	0	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, $\%$	2	2	3	3	1	1
Mvmt Flow	24	32	31	23	16	23

Intersection
Intersection Delay, s/veh $\quad 22.1$
Intersection LOS

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			*				\&				\&	
Traffic Vol, veh/h	0	1	100	48	0	28	79	63	0	32	139	24
Future Vol, veh/h	0	1	100	48	0	28	79	63	0	32	139	24
Peak Hour Factor	0.92	0.68	0.68	0.68	0.92	0.68	0.68	0.68	0.92	0.68	0.68	0.68
Heavy Vehicles, \%	2	11	11	11	2	4	4	4	2	6	6	6
Mvmt Flow	0	1	147	71	0	41	116	93	0	47	204	35
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		15.3				15.9				17.1		
HCM LOS		C				C				C		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	16%	1%	16%	17%
Vol Thru, \%	71%	67%	46%	82%
Vol Right, \%	12%	32%	37%	1%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	195	149	170	320
LT Vol	32	1	28	53
Through Vol	139	100	79	263
RT Vol	24	48	63	4
Lane Flow Rate	287	219	250	471
Geometry Grp	1	1	1	1
Degree of Util (X)	0.53	0.427	0.473	0.818
Departure Headway (Hd)	6.656	7.011	6.81	6.26
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	539	511	525	574
Service Time	4.748	5.106	4.902	4.338
HCM Lane V/C Ratio	0.532	0.429	0.476	0.821
HCM Control Delay	17.1	15.3	15.9	31.7
HCM Lane LOS	C	C	C	D
HCM 95th-tile Q	3.1	2.1	2.5	8.2

Intersection												
Int Delay, s/veh 4.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			*			\ddagger			\ddagger	
Traffic Vol, veh/h	6	22	14	16	0	20	8	168	15	115	208	11
Future Vol, veh/h	6	22	14	16	0	20	8	168	15	115	208	11
Conflicting Peds, \#/hr	20	0	8	8	0	20	27	0	0	0	0	27
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-		-	-		-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, \%	1	1	1	3	3	3	7	7	7	2	2	2
Mvmt Flow	9	32	21	24	0	29	12	247	22	169	306	16

Intersection	
Intersection Delay, s/veh	12.4
Intersection LOS	B

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\$				\&				\$	
Traffic Vol, veh/h	0	1	1	2	0	87	1	92	0	9	91	164
Future Vol, veh/h	0	1	1	2	0	87	1	92	0	9	91	164
Peak Hour Factor	0.92	0.72	0.72	0.72	0.92	0.72	0.72	0.72	0.92	0.72	0.72	0.72
Heavy Vehicles, \%	2	1	1	1	2	5	5	5	2	4	4	4
Mvmt Flow	0	1	1	3	0	121	1	128	0	13	126	228
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		9				11.9				12.4		
HCM LOS		A				B				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	3%	25%	48%	31%
Vol Thru, \%	34%	25%	1%	67%
Vol Right, \%	62%	50%	51%	2%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	264	4	180	238
LT Vol	9	1	87	73
Through Vol	91	1	1	160
RT Vol	164	2	92	5
Lane Flow Rate	367	6	250	331
Geometry Grp	1	1	1	1
Degree of Util (X)	0.49	0.009	0.381	0.478
Departure Headway (Hd)	4.815	5.912	5.491	5.211
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	748	604	655	691
Service Time	2.842	3.961	3.522	3.239
HCM Lane V/C Ratio	0.491	0.01	0.382	0.479
HCM Control Delay	12.4	9	11.9	12.9
HCM Lane LOS	B	A	B	B
HCM 95th-tile Q	2.7	0	1.8	2.6

Intersection
Intersection Delay, s/veh 9.8
Intersection LOS A

Movement EBU	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR
Lane Configurations	M				\uparrow		$\hat{\beta}$	
Traffic Vol, veh/h 0	41	80	0	0	45	0	129	19
Future Vol, veh/h 0	41	80	0	0	45	0	129	19
Peak Hour Factor 0.92	0.52	0.52	0.92	0.52	0.52	0.92	0.52	0.52
Heavy Vehicles, \% 2	1	1	2	13	13	2	13	13
Mvmt Flow 0	79	154	0	0	87	0	248	37
Number of Lanes 0	1	0	0	0	1	0	1	0
Approach	EB				NB		SB	
Opposing Approach					SB		NB	
Opposing Lanes	0				1		1	
Conflicting Approach Left	SB				EB			
Conflicting Lanes Left	1				1		0	
Conflicting Approach Right	NB						EB	
Conflicting Lanes Right	1				0		1	
HCM Control Delay	9.3				8.7		10.5	
HCM LOS	A				A		B	

Lane	NBLn1 EBLn1 SBLn1		
Vol Left, \%	0%	34%	0%
Vol Thru, \%	100%	0%	87%
Vol Right, \%	0%	66%	13%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	45	121	148
LT Vol	0	41	0
Through Vol	45	0	129
RT Vol	0	80	19
Lane Flow Rate	87	233	285
Geometry Grp	1	1	1
Degree of Util (X)	0.12	0.29	0.371
Departure Headway (Hd)	5.001	4.481	4.692
Convergence, Y/N	Yes	Yes	Yes
Cap	714	800	766
Service Time	3.05	2.514	2.732
HCM Lane V/C Ratio	0.122	0.291	0.372
HCM Control Delay	8.7	9.3	10.5
HCM Lane LOS	A	A	B
HCM 95th-tile Q	0.4	1.2	1.7

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow			\ddagger		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	0	158	68	5	35	0	17	0	20	24	38	124
Future Vol, veh/h	0	158	68	5	35	0	17	0	20	24	38	124
Conflicting Peds, \#/hr	3	0	6	6	0	3	55	0	148	148	0	55
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	0	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	65	65	65	65	65	65	65	65	65	65	65	65
Heavy Vehicles, \%	2	2	2	3	3	3	3	3	3	4	4	4
Mvmt Flow	0	243	105	8	54	0	26	0	31	37	58	191

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 13.3 |
| Intersection LOS | B |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\&				\$				\$	
Traffic Vol, veh/h	0	15	76	38	0	29	104	56	0	35	200	29
Future Vol, veh/h	0	15	76	38	0	29	104	56	0	35	200	29
Peak Hour Factor	0.92	0.79	0.79	0.79	0.92	0.79	0.79	0.79	0.92	0.79	0.79	0.79
Heavy Vehicles, \%	2	5	5	5	2	7	7	7	2	5	5	5
Mvmt Flow	0	19	96	48	0	37	132	71	0	44	253	37
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		11.4				12.8				14.8		
HCM LOS		B				B				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	12%	15%	18%
Vol Thru, \%	76%	59%	55%	73%
Vol Right, \%	11%	29%	30%	8%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	264	129	189	215
LT Vol	35	15	29	39
Through Vol	200	76	104	158
RT Vol	29	38	56	18
Lane Flow Rate	334	163	239	272
Geometry Grp	1	1	1	1
Degree of Util (X)	0.523	0.274	0.393	0.435
Departure Headway (Hd)	5.637	6.035	5.91	5.749
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	635	589	605	621
Service Time	3.713	4.128	3.994	3.83
HCM Lane V/C Ratio	0.526	0.277	0.395	0.438
HCM Control Delay	14.8	11.4	12.8	13.2
HCM Lane LOS	B	B	B	B
HCM 95th-tile Q	3	1.1	1.9	2.2

Movement	SBU	SBL	SBT	SBR
Lane Configurations		\uparrow		
Traffic Vol, veh/h	0	39	158	18
Future Vol, veh/h	0	39	158	18
Peak Hour Factor	0.92	0.79	0.79	0.79
Heavy Vehicles, \%	2	4	4	4
Mvmt tlow	0	49	20	23
Number of Lanes	0	0	1	0
Approach	SB			
Opposing Approach	NB			
Opposing Lanes	1			
Conflicting Approach Left	WB			
Conflicting Lanes Left	1			
Conflicting Approach Right	EB			
Conflicting Lanes Right	1			
HCM Control Delay	13.2			
HCM LOS	B			

Intersection												
Int Delay, s/veh 2.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\&			\&	
Traffic Vol, veh/h	8	18	14	20	3	29	10	228	18	19	197	13
Future Vol, veh/h	8	18	14	20	3	29	10	228	18	19	197	13
Conflicting Peds, \#/hr	25	0	4	4	0	25	57	0	12	12	0	57
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-				-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, \%	5	5	5	4	4	4	6	6	6	4	4	4
Mvmt Flow	10	23	18	25	4	37	13	289	23	24	249	16

Major/Minor	Minor2		Minor1					Major1			Major2			
Conflicting Flow All	734	712	319		667	708	337		323	0	0	323	0	0
Stage 1	363	363	-		337	337	-		-	-	-	-	-	
Stage 2	371	349	-		330	371	-		-	-	-	-	-	
Critical Hdwy	7.15	6.55	6.25		7.14	6.54	6.24		4.16	-	-	4.14	-	
Critical Hdwy Stg 1	6.15	5.55	-		6.14	5.54	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.15	5.55	-		6.14	5.54	-		-	-	-	-	-	-
Follow-up Hdwy	3.545	4.045	3.345		3.536	4.036	3.336		2.254	-	-	2.236	-	-
Pot Cap-1 Maneuver	332	354	715		370	357	701		1215	-	-	1226	-	-
Stage 1	650	619	-		673	638	-		-	-	-	-	-	-
Stage 2	643	628	-		679	616	-		-	-	-	-	-	-
Platoon blocked, \%										-	-		-	-
Mov Cap-1 Maneuver	279	319	674		326	322	676		1210	-	-	1197	-	-
Mov Cap-2 Maneuver	279	319	-		326	322	-		-	-	-	-	-	-
Stage 1	607	571	-		657	623	-		-	-	-	-	-	-
Stage 2	582	613	-		617	569	-		-	-	-	-	-	-
Approach	EB				WB				NB			SB		
HCM Control Delay, s	16				14.2				0.3			0.7		
HCM LOS	C				B									
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR						
Capacity (veh/h)	1210	-	-	378	458	1197	-	-						
HCM Lane V/C Ratio	0.01	-	-	0.134	0.144	0.02	-	-						
HCM Control Delay (s)	8	0	-	16	14.2	8.1	0	-						
HCM Lane LOS	A	A	-	C	B	A	A	-						
HCM 95th \%tile Q(veh)	0	-	-	0.5	0.5	0.1	-	-						

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 10.8 |
| Intersection LOS | B |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			*				\&				\uparrow	
Traffic Vol, veh/h	0	4	2	11	0	58	2	59	0	6	187	67
Future Vol, veh/h	0	4	2	11	0	58	2	59	0	6	187	67
Peak Hour Factor	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78
Heavy Vehicles, \%	2	1	1	1	2	7	7	7	2	4	4	4
Mvmt Flow	0	5	3	14	0	74	3	76	0	8	240	86
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		8.5				9.9				11.1		
HCM LOS		A				A				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	2%	24%	49%	18%
Vol Thru, \%	72%	12%	2%	79%
Vol Right, \%	26%	65%	50%	3%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	260	17	119	227
LT Vol	6	4	58	41
Through Vol	187	2	2	179
RT Vol	67	11	59	7
Lane Flow Rate	333	22	153	291
Geometry Grp	1	1	1	1
Degree of Util (X)	0.428	0.032	0.223	0.39
Departure Headway (Hd)	4.622	5.359	5.265	4.824
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	773	672	676	742
Service Time	2.683	3.359	3.349	2.888
HCM Lane V/C Ratio	0.431	0.033	0.226	0.392
HCM Control Delay	11.1	8.5	9.9	11
HCM Lane LOS	B	A	A	B
HCM 95th-tile Q	2.2	0.1	0.8	1.9

Intersection
Intersection Delay, s/veh 7.7
Intersection LOS A

Movement EBU	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR
Lane Configurations	*				\uparrow		\uparrow	
Traffic Vol, veh/h 0	23	18	0	10	33	0	23	30
Future Vol, veh/h 0	23	18	0	10	33	0	23	30
Peak Hour Factor 0.92	0.57	0.57	0.92	0.57	0.57	0.92	0.57	0.57
Heavy Vehicles, \% 2	7	7	2	23	23	2	15	15
Mvmt Flow 0	40	32	0	18	58	0	40	53
Number of Lanes 0	1	0	0	0	1	0	1	0
Approach	EB			NB			SB	
Opposing Approach				SB			NB	
Opposing Lanes	0			1			1	
Conflicting Approach Left	SB			EB				
Conflicting Lanes Left	1			1			0	
Conflicting Approach Right	NB						EB	
Conflicting Lanes Right	1			0			1	
HCM Control Delay	7.6			8.1			7.5	
HCM LOS	A			A			A	

Lane	NBLn1 EBLn1 SBLn1		
Vol Left, \%	23%	56%	0%
Vol Thru, $\%$	77%	0%	43%
Vol Right, \%	0%	44%	57%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	43	41	53
LT Vol	10	23	0
Through Vol	33	0	23
RT Vol	0	18	30
Lane Flow Rate	75	72	93
Geometry Grp	1	1	1
Degree of Util (X)	0.095	0.083	0.103
Departure Headway (Hd)	4.536	4.157	3.999
Convergence, Y/N	Yes	Yes	Yes
Cap	785	849	888
Service Time	2.592	2.248	2.061
HCM Lane V/C Ratio	0.096	0.085	0.105
HCM Control Delay	8.1	7.6	7.5
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.3	0.3	0.3

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\ddagger		${ }^{7}$	F	
Traffic Vol, veh/h	0	89	20	29	61	0	11	0	17	19	19	46
Future Vol, veh/h	0	89	20	29	61	0	11	0	17	19	19	46
Conflicting Peds, \#/hr	24	0	35	35	0	24	33	0	145	145	0	33
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	50	50	50	50	50	50	50	50	50	50	50	50
Heavy Vehicles, \%	5	5	5	7	7	7	1	1	1	4	4	4
Mvmt Flow	0	178	40	58	122	0	22	0	34	38	38	92

Intersection						
Int Delay, s/veh	2.6					
Movement		EBL	EBT	WBT	WBR	SBL
Lane Configurations		-1	6		SBR	
Traffic Vol, veh/h	48	86	69	22	7	
Future Vol, veh/h	48	86	69	22	7	16
Conflicting Peds, \#/hr	0	0	0	0	3	16
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	52	52	52	52	52	52
Heavy Vehicles, \%	4	4	10	10	48	48
Mvmt Flow	92	165	133	42	13	31

Intersection						
Int Delay, s/veh	5.9					
Movement		EBL	EBT	WBT	WBR	SBL
Lane Configurations		-1	\uparrow		SBR	
Traffic Vol, veh/h	31	64	33	19	38	
Future Vol, veh/h	31	64	33	19	38	61
Conflicting Peds, \#/hr	0	0	0	0	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	40	40	40	40	40	40
Heavy Vehicles, $\%$	4	4	17	17	2	2
Mvmt Flow	78	160	83	48	95	153

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 12.5 |
| Intersection LOS | B |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\$				\ddagger				\$	
Traffic Vol, veh/h	0	15	76	31	0	28	86	34	0	23	237	27
Future Vol, veh/h	0	15	76	31	0	28	86	34	0	23	237	27
Peak Hour Factor	0.92	0.85	0.85	0.85	0.92	0.85	0.85	0.85	0.92	0.85	0.85	0.85
Heavy Vehicles, \%	2	5	5	5	2	4	4	4	2	2	2	2
Mvmt Flow	0	18	89	36	0	33	101	40	0	27	279	32
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		10.8				11.2				13.6		
HCM LOS		B				B				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	8%	12%	19%	13%
Vol Thru, \%	83%	62%	58%	80%
Vol Right, \%	9%	25%	23%	6%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	287	122	148	252
LT Vol	23	15	28	34
Through Vol	237	76	86	202
RT Vol	27	31	34	16
Lane Flow Rate	338	144	174	296
Geometry Grp	1	1	1	1
Degree of Util (X)	0.498	0.235	0.283	0.446
Departure Headway (Hd)	5.314	5.902	5.846	5.417
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	675	606	613	664
Service Time	3.363	3.966	3.907	3.469
HCM Lane V/C Ratio	0.501	0.238	0.284	0.446
HCM Control Delay	13.6	10.8	11.2	12.8
HCM Lane LOS	B	B	B	B
HCM 95th-tile Q	2.8	0.9	1.2	2.3

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	34	202	16
Future Vol, veh/h	0	34	202	16
Peak Hour Factor	0.92	0.85	0.85	0.85
Heavy Vehicles, \%	2	3	3	3
Mumt Flow	0	40	238	19
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		12.8		
HCM LOS		B		

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\ddagger			*			*	
Traffic Vol, veh/h	8	18	29	9	3	22	11	257	5	20	225	11
Future Vol, veh/h	8	18	29	9	3	22	11	257	5	20	225	11
Conflicting Peds, \#/hr	52	0	3	3	0	52	5	0	7	7	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	1	1	1	1	1	1	1	2	2	2
Mvmt Flow	8	19	30	9	3	23	11	268	5	21	234	11

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 9.8 |
| Intersection LOS | A |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\$				\&				\&	
Traffic Vol, veh/h	0	8	8	10	0	56	5	49	0	12	212	49
Future Vol, veh/h	0	8	8	10	0	56	5	49	0	12	212	49
Peak Hour Factor	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95
Heavy Vehicles, \%	2	1	1	1	2	1	1	1	2	1	1	1
Mvmt Flow	0	8	8	11	0	59	5	52	0	13	223	52
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		8.5				9.1				10		
HCM LOS		A				A				A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	4%	31%	51%	7%
Vol Thru, \%	78%	31%	5%	85%
Vol Right, \%	18%	38%	45%	8%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	273	26	110	261
LT Vol	12	8	56	18
Through Vol	212	8	5	221
RT Vol	49	10	49	22
Lane Flow Rate	287	27	116	275
Geometry Grp	1	1	1	1
Degree of Util (X)	0.358	0.039	0.162	0.348
Departure Headway (Hd)	4.488	5.176	5.037	4.559
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	799	686	707	786
Service Time	2.529	3.248	3.097	2.601
HCM Lane V/C Ratio	0.359	0.039	0.164	0.35
HCM Control Delay	10	8.5	9.1	10
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	1.6	0.1	0.6	1.6

Intersection
Intersection Delay, s/veh 7.2
Intersection LOS A

Movement EBU	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR
Lane Configurations	*				\uparrow		\uparrow	
Traffic Vol, veh/h 0	5	27	0	20	24	0	31	3
Future Vol, veh/h 0	5	27	0	20	24	0	31	3
Peak Hour Factor 0.92	0.76	0.76	0.92	0.76	0.76	0.92	0.76	0.76
Heavy Vehicles, \% 2	1	1	2	1	1	2	6	6
Mvmt Flow 0	7	36	0	26	32	0	41	4
Number of Lanes 0	1	0	0	0	1	0	1	0
Approach	EB			NB			SB	
Opposing Approach				SB			NB	
Opposing Lanes	0			1			1	
Conflicting Approach Left	SB			EB				
Conflicting Lanes Left	1			1			0	
Conflicting Approach Right	NB						EB	
Conflicting Lanes Right	1			0			1	
HCM Control Delay	6.8			7.4			7.3	
HCM LOS	A			A			A	

Lane	NBLn1 EBLn1 SBLn1		
Vol Left, \%	45%	16%	0%
Vol Thru, $\%$	55%	0%	91%
Vol Right, \%	0%	84%	9%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	44	32	34
LT Vol	20	5	0
Through Vol	24	0	31
RT Vol	0	27	3
Lane Flow Rate	58	42	45
Geometry Grp	1	1	1
Degree of Util (X)	0.066	0.042	0.051
Departure Headway (Hd)	4.115	3.618	4.065
Convergence, Y/N	Yes	Yes	Yes
Cap	872	982	881
Service Time	2.134	1.667	2.088
HCM Lane V/C Ratio	0.067	0.043	0.051
HCM Control Delay	7.4	6.8	7.3
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.2	0.1	0.2

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			*			\ddagger		${ }^{7}$	F	
Traffic Vol, veh/h	0	65	2	3	57	0	3	0	7	16	6	55
Future Vol, veh/h	0	65	2	3	57	0	3	0	7	16	6	55
Conflicting Peds, \#/hr	0	0	12	12	0	0	3	0	2	2	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	72	72	72	72	72	72	72	72	72	72	72	72
Heavy Vehicles, \%	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	0	90	3	4	79	0	4	0	10	22	8	76

Intersection						
Int Delay, s/veh	3.5					
Movement		EBL	EBT	WBT	WBR	SBL
Lane Configurations		\pm	1		SBR	
Traffic Vol, veh/h	18	24	23	17	12	17
Future Vol, veh/h	18	24	23	17	12	17
Conflicting Peds, \#/hr	0	0	0	0	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, $\%$	2	2	3	3	1	1
Mvmt Flow	24	32	31	23	16	23

Intersection
Intersection Delay, s/veh $\quad 23.5$
Intersection LOS

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\&				\$				\&	
Traffic Vol, veh/h	0	1	87	62	0	28	79	63	0	33	142	24
Future Vol, veh/h	0	1	87	62	0	28	79	63	0	33	142	24
Peak Hour Factor	0.92	0.68	0.68	0.68	0.92	0.68	0.68	0.68	0.92	0.68	0.68	0.68
Heavy Vehicles, \%	2	11	11	11	2	4	4	4	2	6	6	6
Mvmt Flow	0	1	128	91	0	41	116	93	0	49	209	35
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		15.6				16.4				18		
HCM LOS		C				C				C		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	1%	16%	15%
Vol Thru, \%	71%	58%	46%	83%
Vol Right, \%	12%	41%	37%	1%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	199	150	170	326
LT Vol	33	1	28	50
Through Vol	142	87	79	272
RT Vol	24	62	63	4
Lane Flow Rate	293	221	250	479
Geometry Grp	1	1	1	1
Degree of Util (X)	0.554	0.437	0.485	0.838
Departure Headway (Hd)	6.814	7.129	6.989	6.416
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	533	505	518	571
Service Time	4.83	5.16	5.006	4.416
HCM Lane V/C Ratio	0.55	0.438	0.483	0.839
HCM Control Delay	18	15.6	16.4	34.2
HCM Lane LOS	C	C	C	D
HCM 95th-tile Q	3.3	2.2	2.6	8.8

Movement	SBU	SBL	SBT	SBR
Lane Configurations		\uparrow		
Traffic Vol, veh/h	0	50	272	4
Future Vol, veh/h	0	50	272	4
Peak Hour Factor	0.92	0.68	0.68	0.68
Heavy Vehicles, \%	2	2	2	2
Mvmt tlow	0	74	400	6
Number of Lanes	0	0	1	0
Approach	SB			
Opposing Approach	NB			
Opposing Lanes	1			
Conflicting Approach Left	WB			
Conflicting Lanes Left	1			
Conflicting Approach Right	EB			
Conflicting Lanes Right	1			
HCM Control Delay	34.2			
HCM LOS	D			

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\&			\&			\$	
Traffic Vol, veh/h	6	22	14	18	0	23	8	169	38	130	216	11
Future Vol, veh/h	6	22	14	18	0	23	8	169	38	130	216	11
Conflicting Peds, \#/hr	20	0	8	8	0	20	27	0	0	0	0	27
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, \%	1	1	1	8	8	8	6	6	6	7	7	7
Mvmt Flow	9	32	21	26	0	34	12	249	56	191	318	16

Intersection	
Intersection Delay, s/veh	13.2
Intersection LOS	B

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			*				\&				\&	
Traffic Vol, veh/h	0	1	1	2	0	88	1	93	0	9	114	148
Future Vol, veh/h	0	1	1	2	0	88	1	93	0	9	114	148
Peak Hour Factor	0.92	0.72	0.72	0.72	0.92	0.72	0.72	0.72	0.92	0.72	0.72	0.72
Heavy Vehicles, \%	2	1	1	1	2	4	4	4	2	4	4	4
Mvmt Flow	0	1	1	3	0	122	1	129	0	13	158	206
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		9.1				12.2				13.1		
HCM LOS		A				B				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	3%	25%	48%	33%
Vol Thru, \%	42%	25%	1%	65%
Vol Right, \%	55%	50%	51%	2%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	271	4	182	248
LT Vol	9	1	88	81
Through Vol	114	1	1	162
RT Vol	148	2	93	5
Lane Flow Rate	376	6	253	344
Geometry Grp	1	1	1	1
Degree of Util (X)	0.514	0.009	0.391	0.514
Departure Headway (Hd)	4.912	6.034	5.565	5.376
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	734	591	647	672
Service Time	2.945	4.094	3.602	3.41
HCM Lane V/C Ratio	0.512	0.01	0.391	0.512
HCM Control Delay	13.1	9.1	12.2	14
HCM Lane LOS	B	A	B	B
HCM 95th-tile Q	3	0	1.9	3

Movement	SBU	SBL	SBT	SBR
Lane Configurations			\$	
Traffic Vol, veh/h	0	81	162	5
Future Vol, veh/h	0	81	162	5
Peak Hour Factor	0.92	0.72	0.72	0.72
Heavy Vehicles, \%	2	9	9	9
Mvmt Flow	0	113	225	7
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		14		
HCM LOS		B		

Intersection
Intersection Delay, s/veh11.3
Intersection LOS B

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Lane Configurations			\$				¢				\$				\$	
Traffic Vol, veh/h	0	41	60	58	0	15	2	6	0	3	42	0	0	72	76	19
Future Vol, veh/h	0	41	60	58	0	15	2	6	0	3	42	0	0	72	76	19
Peak Hour Factor	0.92	0.52	0.52	0.52	0.92	0.52	0.52	0.52	0.92	0.52	0.52	0.52	0.92	0.52	0.52	0.52
Heavy Vehicles, \%	2	1	1	1	2	100	100	100	2	1	1	1	2	1	1	1
Mumt Flow	0	79	115	112	0	29	4	12	0	6	81	0	0	138	146	37
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	1	1
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	1	1	1	1
Conflicting Approach Right	NB	SB	WB	EB
Conflicting Lanes Right	1	1	1	1
HCM Control Delay	11.3	10.8	9.2	11.9
HCM LOS	B	A	B	

Lane	NBLn1 EBLn1WBLn1 SBLn1			
Vol Left, \%	7%	26%	65%	43%
Vol Thru, \%	93%	38%	9%	46%
Vol Right, \%	0%	36%	26%	11%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	45	159	23	167
LT Vol	3	41	15	72
Through Vol	42	60	2	76
RT Vol	0	58	6	19
Lane Flow Rate	87	306	44	321
Geometry Grp	1	1	1	1
Degree of Util (X)	0.129	0.411	0.088	0.441
Departure Headway (Hd)	5.358	4.84	7.137	4.943
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	672	737	505	719
Service Time	3.362	2.926	5.143	3.028
HCM Lane V/C Ratio	0.129	0.415	0.087	0.446
HCM Control Delay	9.2	11.3	10.8	11.9
HCM Lane LOS	A	B	B	B
HCM 95th-tile Q	0.4	2	0.3	2.3

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\uparrow			*		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	0	150	68	5	34	0	17	0	23	24	39	127
Future Vol, veh/h	0	150	68	5	34	0	17	0	23	24	39	127
Conflicting Peds, \#/hr	3	0	6	6	0	3	55	0	148	148	0	55
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	0	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	65	65	65	65	65	65	65	65	65	65	65	65
Heavy Vehicles, \%	9	9	9	1	1	1	3	3	3	4	4	4
Mvmt Flow	0	231	105	8	52	0	26	0	35	37	60	195

Intersection						
Int Delay, s/veh	4.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		M	
Traffic Vol, veh/h	107	121	18	54	34	27
Future Vol, veh/h	107	121	18	54	34	27
Conflicting Peds, \#/hr	0	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	67	67	67	67	67	67
Heavy Vehicles, \%	10	10	3	3	31	31
Mumt Flow	160	181	27	81	51	40

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 13.5 |
| Intersection LOS | B |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\&				*				\&	
Traffic Vol, veh/h	0	15	70	45	0	29	104	56	0	36	204	29
Future Vol, veh/h	0	15	70	45	0	29	104	56	0	36	204	29
Peak Hour Factor	0.92	0.79	0.79	0.79	0.92	0.79	0.79	0.79	0.92	0.79	0.79	0.79
Heavy Vehicles, \%	2	5	5	5	2	7	7	7	2	5	5	5
Mvmt Flow	0	19	89	57	0	37	132	71	0	46	258	37
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		11.5				12.9				15.1		
HCM LOS		B				B				C		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	12%	15%	18%
Vol Thru, \%	76%	54%	55%	74%
Vol Right, \%	11%	35%	30%	8%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	269	130	189	217
LT Vol	36	15	29	38
Through Vol	204	70	104	161
RT Vol	29	45	56	18
Lane Flow Rate	341	165	239	275
Geometry Grp	1	1	1	1
Degree of Util (X)	0.535	0.276	0.395	0.44
Departure Headway (Hd)	5.651	6.036	5.942	5.768
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	633	589	600	618
Service Time	3.729	4.133	4.029	3.852
HCM Lane V/C Ratio	0.539	0.28	0.398	0.445
HCM Control Delay	15.1	11.5	12.9	13.4
HCM Lane LOS	C	B	B	B
HCM 95th-tile Q	3.2	1.1	1.9	2.2

Movement	SBU	SBL	SBT	SBR
Lane Configurations			\$	
Traffic Vol, veh/h	0	38	161	18
Future Vol, veh/h	0	38	161	18
Peak Hour Factor	0.92	0.79	0.79	0.79
Heavy Vehicles, \%	2	4	4	4
Mvmt Flow	0	48	204	23
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		13.4		
HCM LOS		B		

Intersection												
Int Delay, s/veh 3.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			\&			\&	
Traffic Vol, veh/h	8	18	14	34	3	47	10	215	17	19	207	13
Future Vol, veh/h	8	18	14	34	3	47	10	215	17	19	207	13
Conflicting Peds, \#/hr	25	0	4	4	0	25	57	0	12	12	0	57
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-		-	-		-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, \%	5	5	5	17	17	17	3	3	3	7	7	7
Mvmt Flow	10	23	18	43	4	59	13	272	22	24	262	16

Intersection	
Intersection Delay, s/veh 10.9	
Intersection LOS	B

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			*				*				\$	
Traffic Vol, veh/h	0	4	2	11	0	48	2	46	0	6	186	70
Future Vol, veh/h	0	4	2	11	0	48	2	46	0	6	186	70
Peak Hour Factor	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78
Heavy Vehicles, \%	2	1	1	1	2	1	1	1	2	4	4	4
Mvmt Flow	0	5	3	14	0	62	3	59	0	8	238	90
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		8.5				9.5				11		
HCM LOS		A				A				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	2%	24%	50%	20%
Vol Thru, \%	71%	12%	2%	77%
Vol Right, \%	27%	65%	48%	3%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	262	17	96	251
LT Vol	6	4	48	51
Through Vol	186	2	2	193
RT Vol	70	11	46	7
Lane Flow Rate	336	22	123	322
Geometry Grp	1	1	1	1
Degree of Util (X)	0.426	0.032	0.179	0.431
Departure Headway (Hd)	4.567	5.274	5.247	4.827
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	783	671	678	743
Service Time	2.622	3.371	3.324	2.884
HCM Lane V/C Ratio	0.429	0.033	0.181	0.433
HCM Control Delay	11	8.5	9.5	11.5
HCM Lane LOS	B	A	A	B
HCM 95th-tile Q	2.1	0.1	0.6	2.2

Intersection
Intersection Delay, s/veh 7.9
Intersection LOS A

Lane	NBLn1 EBLn1WBLn1 SBLn1			
Vol Left, \%	35%	57%	8%	0%
Vol Thru, \%	65%	0%	45%	36%
Vol Right, \%	0%	42%	47%	64%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	23	40	76	47
LT Vol	8	23	6	0
Through Vol	15	0	34	17
RT Vol	0	17	36	30
Lane Flow Rate	40	70	133	82
Geometry Grp	1	1	1	1
Degree of Util (X)	0.051	0.082	0.163	0.093
Departure Headway (Hd)	4.54	4.202	4.409	4.046
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	792	858	803	890
Service Time	2.547	2.202	2.495	2.052
HCM Lane V/C Ratio	0.051	0.082	0.166	0.092
HCM Control Delay	7.8	7.6	8.4	7.5
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.2	0.3	0.6	0.3

Intersection												
Int Delay, s/veh 5.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			*		${ }^{1}$	\uparrow	
Traffic Vol, veh/h	0	102	20	29	35	0	11	0	18	19	21	49
Future Vol, veh/h	0	102	20	29	35	0	11	0	18	19	21	49
Conflicting Peds, \#/hr	24	0	35	35	0	24	33	0	145	145	0	33
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-		-	-	-	-	-	-	-	0		
Veh in Median Storage, \#	-	0		-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	50	50	50	50	50	50	50	50	50	50	50	50
Heavy Vehicles, \%	14	14	14	1	1	1	1	1	1	4	4	4
Mvmt Flow	0	204	40	58	70	0	22	0	36	38	42	98

Intersection						
Int Delay, s/veh 1.9						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	45	92	28	27	0	0
Future Vol, veh/h	45	92	28	27	0	0
Conflicting Peds, \#/hr	0	0	0	0	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	40	40	40	40	40	40
Heavy Vehicles, \%	19	19	19	19	1	1
Mvmt Flow	113	230	70	68	0	0

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 12.6 |
| Intersection LOS | B |

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\&				\$				*	
Traffic Vol, veh/h	0	15	76	31	0	28	86	34	0	23	239	27
Future Vol, veh/h	0	15	76	31	0	28	86	34	0	23	239	27
Peak Hour Factor	0.92	0.85	0.85	0.85	0.92	0.85	0.85	0.85	0.92	0.85	0.85	0.85
Heavy Vehicles, \%	2	5	5	5	2	4	4	4	2	2	2	2
Mvmt Flow	0	18	89	36	0	33	101	40	0	27	281	32
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		10.8				11.3				13.7		
HCM LOS		B				B				B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	8%	12%	19%	13%
Vol Thru, \%	83%	62%	58%	81%
Vol Right, \%	9%	25%	23%	6%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	289	122	148	254
LT Vol	23	15	28	33
Through Vol	239	76	86	205
RT Vol	27	31	34	16
Lane Flow Rate	340	144	174	299
Geometry Grp	1	1	1	1
Degree of Util (X)	0.502	0.236	0.284	0.45
Departure Headway (Hd)	5.32	5.917	5.862	5.423
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	677	604	611	660
Service Time	3.372	3.982	3.923	3.477
HCM Lane V/C Ratio	0.502	0.238	0.285	0.453
HCM Control Delay	13.7	10.8	11.3	12.9
HCM Lane LOS	B	B	B	B
HCM 95th-tile Q	2.8	0.9	1.2	2.3

Movement	SBU	SBL	SBT	SBR
Lane Configurations			\$	
Traffic Vol, veh/h	0	33	205	16
Future Vol, veh/h	0	33	205	16
Peak Hour Factor	0.92	0.85	0.85	0.85
Heavy Vehicles, \%	2	3	3	3
Mvmt Flow	0	39	241	19
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		12.9		
HCM LOS		B		

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			4			\&	
Traffic Vol, veh/h	8	18	29	17	3	33	11	248	12	28	220	11
Future Vol, veh/h	8	18	29	17	3	33	11	248	12	28	220	11
Conflicting Peds, \#/hr	52	0	3	3	0	52	5	0	7	7	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	1	1	1	3	3	3	1	1	1	2	2	2
Mvmt Flow	8	19	30	18	3	34	11	258	13	29	229	11

Major/Minor	Minor2		Minor1					Major1			Major2			
Conflicting Flow All	656	599	243		616	599	324		246	0	0	278	0	0
Stage 1	298	298	-		295	295	-		-	-	-	-	-	
Stage 2	358	301	-		321	304	-		-	-	-	-	-	
Critical Hdwy	7.11	6.51	6.21		7.13	6.53	6.23		4.11	-	-	4.12	-	
Critical Hdwy Stg 1	6.11	5.51	-		6.13	5.53	-		-	-	-	-	-	
Critical Hdwy Stg 2	6.11	5.51	-		6.13	5.53	-		-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309		3.527	4.027	3.327		2.209	-	-	2.218	-	
Pot Cap-1 Maneuver	380	417	798		401	414	715		1326	-	-	1285	-	-
Stage 1	713	669	-		711	667	-		-	-	-	-	-	-
Stage 2	662	667	-		689	661	-		-	-	-	-	-	-
Platoon blocked, \%										-	-		-	-
Mov Cap-1 Maneuver	330	397	792		358	394	675		1322	-	-	1221	-	-
Mov Cap-2 Maneuver	330	397	-		358	394	-		-	-	-	-	-	
Stage 1	703	648	-		699	656	-		-	-	-	-	-	-
Stage 2	588	656	-		624	640	-		-	-	-	-	-	-
Approach	EB				WB				NB			SB		
HCM Control Delay, s	12.8				12.9				0.3			0.9		
HCM LOS	B				B									
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR						
Capacity (veh/h)	1322	-	-	518	510	1221	-	-						
HCM Lane V/C Ratio	0.009	-	-	0.111	0.108	0.024	-	-						
HCM Control Delay (s)	7.7	0	-	12.8	12.9	8	0	-						
HCM Lane LOS	A	A	-	B	B	A	A	-						
HCM 95th \%tile Q(veh)	0	-	-	0.4	0.4	0.1	-	-						

Intersection	
Intersection Delay, s/veh	9.8
Intersection LOS	A

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			\$				\&				\uparrow	
Traffic Vol, veh/h	0	8	8	10	0	50	5	40	0	12	219	43
Future Vol, veh/h	0	8	8	10	0	50	5	40	0	12	219	43
Peak Hour Factor	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95
Heavy Vehicles, \%	2	1	1	1	2	1	1	1	2	1	1	1
Mvmt Flow	0	8	8	11	0	53	5	42	0	13	231	45
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		8.4				9				10		
HCM LOS		A				A				A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	4%	31%	53%	5%
Vol Thru, \%	80%	31%	5%	87%
Vol Right, \%	16%	38%	42%	8%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	274	26	95	264
LT Vol	12	8	50	13
Through Vol	219	8	5	229
RT Vol	43	10	40	22
Lane Flow Rate	288	27	100	278
Geometry Grp	1	1	1	1
Degree of Util (X)	0.357	0.039	0.141	0.348
Departure Headway (Hd)	4.461	5.155	5.059	4.514
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	805	690	706	795
Service Time	2.499	3.219	3.113	2.553
HCM Lane V/C Ratio	0.358	0.039	0.142	0.35
HCM Control Delay	10	8.4	9	10
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	1.6	0.1	0.5	1.6

Movement	SBU	SBL	SBT	SBR
Lane Configurations			\uparrow	
Traffic Vol, veh/h	0	13	229	22
Future Vol, veh/h	0	13	229	22
Peak Hour Factor	0.92	0.95	0.95	0.95
Heavy Vehicles, \%	2	1	1	1
Mvmt Flow	0	14	241	23
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		10		
HCM LOS		A		

Intersection
Intersection Delay, s/veh 7.4
Intersection LOS \quad A

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Lane Configurations			\&				\&				\uparrow				\&	
Traffic Vol, veh/h	0	5	23	19	0	7	25	8	0	14	17	0	0	18	21	3
Future Vol, veh/h	0	5	23	19	0	7	25	8	0	14	17	0	0	18	21	3
Peak Hour Factor	0.92	0.76	0.76	0.76	0.92	0.76	0.76	0.76	0.92	0.76	0.76	0.76	0.92	0.76	0.76	0.76
Heavy Vehicles, \%	2	1	1	1	2	5	5	5	2	1	1	1	2	1	1	1
Mvmt Flow	0	7	30	25	0	9	33	11	0	18	22	0	0	24	28	4
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	1	1
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	1	1	1	1
Conflicting Approach Right	NB	SB	WB	
Conflicting Lanes Right	1	1	1	1
HCM Control Delay	7.3	7.4	7.5	7.5
HCM LOS	A	A	A	A

Lane	NBLn1 EBLn1WBLn1 SBLn1			
Vol Left, \%	45%	11%	17%	43%
Vol Thru, $\%$	55%	49%	62%	50%
Vol Right, \%	0%	40%	20%	7%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	31	47	40	42
LT Vol	14	5	7	18
Through Vol	17	23	25	21
RT Vol	0	19	8	3
Lane Flow Rate	41	62	53	55
Geometry Grp	1	1	1	1
Degree of Util (X)	0.048	0.067	0.06	0.064
Departure Headway (Hd)	4.249	3.902	4.113	4.19
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	836	908	863	848
Service Time	2.311	1.966	2.177	2.249
HCM Lane V/C Ratio	0.049	0.068	0.061	0.065
HCM Control Delay	7.5	7.3	7.4	7.5
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.2	0.2	0.2	0.2

Intersection												
Int Delay, s/veh 4.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个			\uparrow			*		7	\dagger	
Traffic Vol, veh/h	0	54	2	3	40	0	3	0	8	16	7	57
Future Vol, veh/h	0	54	2	3	40	0	3	0	8	16	7	57
Conflicting Peds, \#/hr	0	0	12	12	0	0	3	0	2	2	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-		-	-		-	0	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	72	72	72	72	72	72	72	72	72	72	72	72
Heavy Vehicles, \%	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	0	75	3	4	56	0	4	0	11	22	10	79

Intersection						
Int Delay, s/veh 1.4						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	15	31	20	13	0	0
Future Vol, veh/h	15	31	20	13	0	0
Conflicting Peds, \#/hr	0	0	0	0	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, \%	5	5	3	3	1	1
Mvmt Flow	20	41	27	17	0	0

[^0]: ${ }^{1}$ See "Long Range Facilities Assessment Report" (DOWA, 2005).
 ${ }^{2}$ The Board's decision to seek voter approval of this bond measure was based on the recommendation of the Long Range Facilities Task Force and DOWA's 2012 update the "Long Range Facilities Assessment Report."

[^1]: 1 Institute of Transportation Engineers (ITE), Trip Generation Manual, 9th Edition, 2012.

[^2]: 2 Transportation Research Board, Highway Capacity Manual 2010, 2010.

[^3]:

